
Lab 5 Overview
Section 9

Dynamic Memory Allocation

1

Coalescing
• What?
• Combining consecutive free blocks

• Why?
• If we didn’t coalesce then the free list would consist of a

bunch of small blocks.
• Upon an allocation request, we might mistakenly think we

don’t have enough contiguous free space.
• When?
• When we free a block, we check the preceding and

following blocks to see if they are free.
• If at least one is free, we coalesce.

2

Coalescing in Explicit Free Lists

Neighboring free blocks are already part of the free list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

How do we tell if a neighboring block if free?

3

Block being freed
Allocated

Allocated

Case 1
Allocated

Free

Case 2
Free

Allocated

Case 3
Free

Free

Case 4

4

0x40

payload and
padding

1

0x40 1

?

?

void* p

free(p);

5

0x40

payload and
padding

1

0x40 1

?
• To determine if the

following block is
allocated we move by
0x40 bytes to the
following block and
read the header

… ?

header of
following block

6

0x40

payload and
padding

1

0x40 1

• To determine if the
following block is
allocated we move by
0x40 bytes to the
following block and
read the header

• To determine if the
previous block is
allocated we check
the preceding block’s
footer.

… ?

… ?

footer of
preceding block

7

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

size a

size a

next

prev

Free block:

size a payload and… size asize a size an p ……

void* p

free(p)

Free block Allocated Block

Increasing addresses

8

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

size a

size a

next

prev

Free block:

size a payload and… size a ……

void* p

free(p)

Allocated block Allocated Block

size a payload and… size a

Increasing addresses

9

size

payload and
padding

tags

Allocated block:

size tags

size tags

next

prev

Free block:

+---+
| 63 | 62 | 61 | 60 | | 2 | 1 | 0 |
+---+

“sizeAndTags
”

Preceding allocated
Current allocated

BlockInfo Struct

1
0

size

payload and
padding

tags

Allocated block: size tags

size tags

next

prev

Free block:

struct BlockInfo {
size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

};
typedef struct BlockInfo BlockInfo;

Page 2 Section Handout (10 min)

1
1

12

Macros

● Pre-compile time “find and replace”
○ #define NUM_ENTRIES 100

● Can be dangerous!
○ #define twice(x) 2*x

■ twice(x+1) => 2*x+1

○ #define twice(x) 2*(x)
■ twice(x+1) => 2*(x+1)

13

Some Provided Macros
• UNSCALED_POINTER_ADD(p,x)

Add without using “pointer arithmetic”

• UNSCALED_POINTER_SUB(p,x)
Subtract without using “pointer arithmetic”

• MIN_BLOCK_SIZE
The size of the smallest block that is safe to allocate

• SIZE(x)
Gets the size from ‘sizeAndTags’

• TAG_USED
Mask for the used tag

• TAG_PRECEDING_USED
Mask for the preceding used tag

• …

There are more. Don’t forget to use them! (or risk losing
points on the lab).

Lab 5
Implement malloc() and
free()

• Before you start to feel
overwhelmed…

• We give you many
functions already
including:
• searchFreeList()
• insertFreeBlock()
• removeFreeBlock()
• coalesceFreeBlock()
• requestMoreSpace()

14

Putting it All Together
Initial 128-byte heap layout:
• BlockInfo* FREE_LIST_HEAD always points to the first

blockin the free list
• The BlockInfo for this free block would look like this:

• sizeAndTags: 130 (128 + 0x2)
• next: null
• prev: null

• The PrecedingUsed tag is set because the previous block is not
free (comes into play when we look at coalescing later)

Size: 128, Preceding Used: 1, Used: 0

FREE_LIST_HEAD 111
5

Allocating Blocks – What Happens?

Size: 128, Preceding Used: 1, Used: 0

FREE_LIST_HEAD 111
6

void* a = malloc(32)

Allocating Blocks

void* a = malloc(32)
• Searches the free list for a block big enough
• The first (and only) block is 128 bytes, which will work
• Bad implementation: return a 120-byte payload (8-

byte header)
• Good implementation: split off 40 bytes, return a

32- byte payload

88:1:040:1:1

Note: “a” does not point to
sizeAndTags! Points to payload, or
where the “next” pointer would
be stored in the BlockInfo

FREE_LIST_HEADa 121
7

Allocating Blocks – What Happens?

88:1:040:1:1

FREE_LIST_HEADa 121
8

void* b = malloc(16)

Allocating Blocks

void* b = malloc(16)

• Only needs a block of 16 + 8 = 24 bytes, but if
we were to free this block in the future, we
would need at least 32 bytes to create a free
block.
• The minimum block size is 32 bytes

40:1:1 32:1:1 56:1:0

FREE_LIST_HEADa b 131
9

Allocating Blocks – What Happens?

40:1:1 32:1:1 56:1:0

FREE_LIST_HEADa b 132
0

void* c = malloc(48)

Allocating Blocks

void* c = malloc(48)

• FREE_LIST_HEAD = null

40:1:1 32:1:1 56:1:1

a b c 142
1

Freeing Blocks – What Happens?

40:1:1 32:1:1 56:1:1

a b c 142
2

free(b)

Freeing Blocks

free(b)

• Inserts block b into the beginning of the free list
• Notice how the tags in the block after needed to

be updated

40:1:1 32:1:0 56:0:1

FREE_LIST_HEADa c 152
3

Freeing Blocks – What Happens?

free(c)

40:1:1 32:1:0 56:0:1

FREE_LIST_HEADa c 152
4

Freeing Blocks

free(c)

• Is this what the heap should look like at the end
of
free(c)?

40:1:1 32:1:0 56:0:0

FREE_LIST_HEADa 162
5

Coalesce Free Blocks

When we have multiple free blocks adjacent to
each
other in memory, we should coalesce them.
• Coalescing basically combines free blocks together

• Bigger blocks are always better; a large block
can satisfy both large and small malloc()
requests

88:1:040:1:1

FREE_LIST_HEADa 26

27

Implementing malloc()

• Figure out how big a block you need
• Call searchFreeList() to get a free block

that
is large enough
• NOTE: If you request 16 bytes, it might give you a

block that is 500 bytes

• Remove that block from the list
• Update size + tags appropriately
• Return a pointer to the payload of that block

20

Implementing free()

• Remember, the pointer you are passed is to
the
payload
• Convert the given used block into a free block
• Insert it into the free list
• Update size + tags appropriately
• Coalesce if necessary by calling
coalesceFreeBlock()

2
8

