Section 9: Memory
Allocation



The Heap

e Memory allocated dynamically by the programmer (malloc)

e Must be explicitly freed (free)
o Free it as soon as you don't need it!

e Distinct from normal variables, which are always on the stack

Use-cases:

e Variable-length data, like arrays or strings (think: Java's ArrayList)
e Long-lived data passed between functions



The interface of the heap in C

Signatures:

void* malloc(size_t length);

void free(void* ptr);

Usage:

int* array = (int*) malloc(10 * sizeof(int));

free(array);



Allocator internals: Finding a free block
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Reminder: Implicit/explicit free-lists are separate
from implicit and explicit allocators.

Comparison: free-lists

Implicit Explicit

e Find the next block via incrementing e Find the next block by following a

by the current block's length pointer
e It may or may not be free e All blocks in the free-list are

o Potentially lots of extra blocks in guaranteed to be free
the way! e Requires space in each free block to

e Requires only knowledge of each store pointers to the blocks

block's size before/after it

For the remainder of this section, we'll be
looking at explicit free-lists.



Anatomy of a block (explicit free-list)

Allocated block:

size a
payload and

padding

size a

We will see a change to this later in section!

Free block:

size

next

prev

size




Boundary tags (header/footer) vs. free-list

e Boundary tags (header and footer) are for the block immediately

before/after in memory

o Used for combining free blocks together
o Facilitate checking whether those blocks are free

e Free-list (next and prev pointers) is used for finding an available free
block

o Entirely unrelated to physical memory layout
o Used only when looking for a block to allocate



Key steps

e Allocation
o Search for a block of sufficient size
If sufficient space for another block, split into two
Remove selected block from free-list
Mark the allocated block as allocated
Return a pointer to the payload

o O O O

e Deallocation (freeing)
o Mark as free
o Coalesce with adjacent blocks if possible
o Add new larger block to free-list
m If using LIFO insertion policy, this free block becomes the new "root"
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