Section 9: Memory
Allocation

The Heap

e Memory allocated dynamically by the programmer (malloc)

e Must be explicitly freed (free)
o Free it as soon as you don't need it!

e Distinct from normal variables, which are always on the stack

Use-cases:

e Variable-length data, like arrays or strings (think: Java's ArrayList)
e Long-lived data passed between functions

The interface of the heap in C

Signatures:

void* malloc(size_t length);

void free(void* ptr);

Usage:

int* array = (int*) malloc(10 * sizeof(int));

free(array);

Allocator internals: Finding a free block

Two options: _ - _ - o
,/’ \\v/’ \\A’¢’— ~‘\
Implicit free list 32/0 32/032/1 32/148/0 48/0:32/1 321
V\ - - ~ - /v\ P ”

e lterate through all
the blocks until you

find one that's free
/ Forward (next) links

Explicit free list A /\.—\ i
32| =7 32|32 3248 /1 | |a8]32 3232 ', |32
e Each free block K ¢ \—%ack (prev) links

stores pointers to

other free blocks Lab 5 uses an explicit free list!

Reminder: Implicit/explicit free-lists are separate
from implicit and explicit allocators.

Comparison: free-lists

Implicit Explicit

e Find the next block via incrementing e Find the next block by following a

by the current block's length pointer
e It may or may not be free e All blocks in the free-list are

o Potentially lots of extra blocks in guaranteed to be free
the way! e Requires space in each free block to

e Requires only knowledge of each store pointers to the blocks

block's size before/after it

For the remainder of this section, we'll be
looking at explicit free-lists.

Anatomy of a block (explicit free-list)

Allocated block:

size a
payload and

padding

size a

We will see a change to this later in section!

Free block:

size

next

prev

size

Boundary tags (header/footer) vs. free-list

e Boundary tags (header and footer) are for the block immediately

before/after in memory

o Used for combining free blocks together
o Facilitate checking whether those blocks are free

e Free-list (next and prev pointers) is used for finding an available free
block

o Entirely unrelated to physical memory layout
o Used only when looking for a block to allocate

Key steps

e Allocation
o Search for a block of sufficient size
If sufficient space for another block, split into two
Remove selected block from free-list
Mark the allocated block as allocated
Return a pointer to the payload

o O O O

e Deallocation (freeing)
o Mark as free
o Coalesce with adjacent blocks if possible
o Add new larger block to free-list
m If using LIFO insertion policy, this free block becomes the new "root"

OX00F8

Ox00F0

OXO00E8

OXO00E®S

ox0eD8

©x00eD0

ox00eC8

0x00C0o

0x00B8

©x00B0

OX00A8

Ox00A0

0x0098

0x0090

0x0088

0x0080

0x0078

0x0070

0x0068

0x0060

0x0058

0x0050

0x0048

0x0040

0x0038

©x0030

0x0028

0x0020

0x0018

0x0010

0x0008

0x0000

‘ Simulation mode ‘ Hex Addresses

GO

)

= malloc(10

void *block4

FREE

FREE

FREE

blocko | ©x000e8

block2 | ©x0048

block3 | ©x0088

