
Section 9: Memory 
Allocation



The Heap
● Memory allocated dynamically by the programmer (malloc)
● Must be explicitly freed (free)

○ Free it as soon as you don't need it!

● Distinct from normal variables, which are always on the stack

Use-cases:

● Variable-length data, like arrays or strings (think: Java's ArrayList)
● Long-lived data passed between functions



The interface of the heap in C
Signatures:

Usage:

void* malloc(size_t length);

void free(void* ptr);

free(array);

int* array = (int*) malloc(10 * sizeof(int));



Allocator internals: Finding a free block
Two options:

Implicit free list

● Iterate through all 
the blocks until you 
find one that's free

Explicit free list

● Each free block 
stores pointers to 
other free blocks Lab 5 uses an explicit free list!



Comparison: free-lists
Implicit

● Find the next block via incrementing 
by the current block's length

● It may or may not be free
○ Potentially lots of extra blocks in 

the way!
● Requires only knowledge of each 

block's size

Explicit

● Find the next block by following a 
pointer

● All blocks in the free-list are 
guaranteed to be free

● Requires space in each free block to 
store pointers to the blocks 
before/after it

For the remainder of this section, we'll be 
looking at explicit free-lists.

Reminder: Implicit/explicit free-lists are separate 
from implicit and explicit allocators.



Anatomy of a block (explicit free-list)

We will see a change to this later in section!



Boundary tags (header/footer) vs. free-list

● Boundary tags (header and footer) are for the block immediately 
before/after in memory

○ Used for combining free blocks together
○ Facilitate checking whether those blocks are free

● Free-list (next and prev pointers) is used for finding an available free 
block

○ Entirely unrelated to physical memory layout
○ Used only when looking for a block to allocate



Key steps
● Allocation

○ Search for a block of sufficient size
○ If sufficient space for another block, split into two
○ Remove selected block from free-list
○ Mark the allocated block as allocated
○ Return a pointer to the payload

● Deallocation (freeing)
○ Mark as free
○ Coalesce with adjacent blocks if possible
○ Add new larger block to free-list

■ If using LIFO insertion policy, this free block becomes the new "root"




