
CSE 351
Section 7

Caches Intro - Autumn 2020

Caches

Cache Motivation
Going all the way to memory is expensive! What if we had an intermediate place

where we could store data closer to the processor?

● Temporal locality
○ If you used some data, you will probably use it again

● Spatial locality
○ If you used some data, you will probably use data that is close to it also

Can you think of any code examples of the above?

Cache Review
The cache stores a subset of main memory with much faster access time! It is

located much closer to the processor, often on the same chip. When we access

memory, we check the cache(s) first.

Processor Cache Main
Memory

I want data at address F

Cache Review
If the data we want isn’t in the cache, that’s a cache miss. We have to go to main

memory, and then we’ll save that data in the cache. By transferring entire blocks

of data at a time, we take advantage of spatial locality.

Cache Main
Memory

I don’t have it I do!I want data at address F

(Block of data
containing F)

Processor

Cache Review
If the data we want is in the cache and valid, that’s a cache hit.

We don’t go to memory, which saves us a lot of time!

Cache Main
Memory

I have it!Access data at F again

(Data at F)

Processor

Cache Organization

Index: 0

1

2

3

4

5

6

7

Offset: 0 1 2 3

● Cache blocks (or lines) are a fixed size.

● The cache has “slots” for blocks of

data that are indexed.

● We access individual bytes in a block

with as an offset from the first byte in

the block.

● The number of blocks in the cache

times the number of bytes in a block

gives us the size of the cache.

Cache with 8 blocks of 4 bytes each:

Tag, Index, Offset!
To determine where each address maps to in the cache, we break it up into:

● The tag is used to distinguish blocks which map to the same location. It is

stored along with the block data and a “valid bit” which indicates whether the

data is current and ready to be used.

● The index tells us the “slot” in which the data at this address goes.

● The offset is tells us how far into the block our address is.

This can be thought of kind of like a modulo hashing function; the address gets

mapped to a location in the cache based on its index bits.

0b11010100 → 0b 1101 01 00

Tag Index Offset

Cache Parameters

Symbol Meaning

K Block Size

C Cache Size

E Associativity

m Address Width

k # Offset Bits = log2(K)

s # Index Bits = log2(C / K)

t # Tag Bits = m - k - s

8 blocks of 4 bytes:
K = 4 bytes k = 2
C = 32 bytes s = 3

Direct-mapped → E = 1

Index: 0

1

2

3

4

5

6

7

Offset: 0 1 2 3

Coming Soon: Associativity
A cache has associativity > 1 if each index may correspond to > 1 block:

We’ll be talking more about associativity on Friday and next week.

Today our focus will be on direct-mapped caches (E = 1), meaning that each

cache index corresponds to exactly one block and vice-versa.

The final page of the worksheet has practice problems with associative caches.

Example
16 B capacity cache, 4 B block size, direct-mapped, 8 bit address length.

What’s the TIO address breakdown? How can we visualize this cache?

● #bits for offset:

● #bits for index:

● #bits for tag:

Index Tag Block Data

00

01

10

11

2 (4 B in a block;

log2(4) = 2)

2 (4 blocks in cache,

direct-mapped)

4 (remaining bits of

address)

Example
Read 1 byte from address 0xAD

1. Translate to Binary:
a. 0xAD = 0b 1010 1101

2. Split into TIO
a. Tag = 1010

b. Index = 11

c. Offset = 01

Index Tag Block Data

00

01

10

11 0xA

4 2 2

Tag Bits Index Bits Offset Bits

This entire line is
loaded into the cache!

Code Analysis

13

Miss Rate
The cache is mostly invisible to programmers. But we can still make some

optimizations by keeping it in mind!

The miss rate is the ratio of cache misses to total memory accesses. If we can

analyze when cache misses occur, we may be able to make our code more

cache-friendly and improve performance.

Average memory access time (AMAT) = (Hit Time) + (Miss Penalty) * (Miss Rate)

What’s the Miss Rate?
● First loop

○ Note array starts at beginning of a block

○ First access misses (cold cache), loads

array[0] through array[3] into cache

■ array[1] through array[3] are hits

○ Miss on array[4], load [4] through [7]

■ array[5] through array[7] are hits

○ 8 accesses, 2 misses

● Second loop
○ Entire array is still in the cache!

○ 8 accesses, 0 misses

● Overall miss rate
○ 16 accesses, 2 misses

○ 2 / 16 = 12.5%

char val = 0;

for (int i = 0; i < 8; i++)

val += array[i];

for (i = 0; i < 8; i++)

val ^= array[i];

array is a char array of size 8.
Its address is 0x600000, and the cache starts cold.

val is stored in a register.

Cache Parameters
C = 256 bytes K = 4 bytes

Cache State

Index Valid
Block Offset

00 01 10 11

0 1 array[0] array[1] array[2] array[3]

1 1 array[4] array[5] array[6] array[7]

2 0 ? ? ? ?

... ...

After execution of both loops:

Cache Simulator

Cache Simulator!
Link:

https://courses.cs.washington.edu/courses/cse351/cachesim/

Worksheet:

https://us.edstem.org/courses/2402/lessons/5419/slides/31721

We haven’t covered all of its features in class yet, but the cache simulator can be

a helpful tool for reasoning through cache problems and mechanisms, particularly

on homework and in lab 4.

https://courses.cs.washington.edu/courses/cse351/cachesim/
https://us.edstem.org/courses/2402/lessons/5419/slides/31721

