CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here © \qquad

Integers and Arithmetic Overflow

Arithmetic overflow occurs when the result of a calculation can't be represented in the current encoding scheme (i.e., it lies outside of the representable range of values), resulting in an incorrect value.

- Unsigned overflow: the result lies outside of [UMin, UMax]; an indicator of this is when you add two numbers and the result is smaller than either number.
- Signed overflow: the result lies outside of [TMin, TMax]; an indicator of this is when you add two numbers with the same sign and the result has the opposite sign.

Exercises:

1) Assuming these are all signed two's complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

001001	110001	011001	101111
+110110			
111111	$\frac{+111011}{1101100}$	+001100	+011111
No	No	Yes	+001110
		No	

2) Find the largest 8 -bit unsigned numeral (answer in hex) such that $\mathrm{c}+0 \mathrm{x} 80$ causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn 2019 Midterm 1C]

Unsigned overflow will occur for $\mathrm{c}>0 \mathrm{x} 80$. Signed overflow can only happen if c is negative (also $>0 \mathrm{x} 80$). Largest is therefore, 0x7F
3) Find the smallest 8 -bit numeral (answer in hex) such that $\mathrm{c}+0 \mathrm{x} 71$ causes signed overflow, but NOT unsigned overflow in 8 bits. [Autumn 2018 Midterm 1C]

For signed overflow, need $(+)+(+)=(-)$. For no unsigned overflow, need no carryout from MSB. The first (-) encoding we can reach from $0 x 71$ is $0 \times 80.0 \times 80-0 x 71=0 x F$.

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (e.g. ∞ and NaN).

IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:

$$
\text { Value }=(-1)^{\text {sign }} \times \text { Mantissa }_{2} \times 2^{\text {Exponent }}=(-1)^{\mathrm{S}} \times 1 . \mathrm{M}_{2} \times 2^{\mathrm{E} \text {-bias }}
$$

The binary representation for floating point values uses three fields:

- S: encodes the sign of the number (0 for positive, 1 for negative)
- E : encodes the exponent in biased notation with a bias of $2^{\mathrm{w}-1}-1$
- M: encodes the mantissa (or significand, or fraction) - stores the fractional portion, but does not include the implicit leading 1.

	\mathbf{S}	\mathbf{E}	\mathbf{M}
	float	1 bit	8 bits
double	1 bit	11 bits	23 bits
			52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

\mathbf{E}	\mathbf{M}	Meaning
0	anything	denormalized number (denorm)
$1-254$	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

Bias Notation

1) Suppose that instead of 8 bits, E was only designated 4 bits. What is the bias in this case?
2) Compare these two representations of E for the following values:

| Exponent | E (4 bits) | | | | E (8 bits) | | | | | | | | |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | 0 | 0 | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 1 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| -1 | 0 | 1 | 1 | 0 | | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

Notice any patterns?
The representations are the same except the length of number of repeating bits in the middle are different.

Floating Point / Decimal Conversions

3) Let's say that we want to represent the number 3145728.125 (broken down as $2^{21}+2^{20}+2^{-3}$)
a. Convert this number to into single precision floating point representation:

0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

b. How does this number highlight a limitation of floating point representation?

Could only represent $2^{\wedge} 21+2^{\wedge} 20$. Not enough bits in the mantissa to hold $2^{\wedge}-3$, which caused rounding.
4) What are the decimal values of the following floats?

0x80000000
-0
0xFF94BEEF
NaN
$+9.5$
$0 x 41180000=0 b 0|10000010| 00110000 \ldots 0$.
$\mathrm{S}=0, \mathrm{E}=128+2=130 \rightarrow$ Exponent $=\mathrm{E}-$ bias $=3$, Mantissa $=1.0011_{2}$ $1.0011_{2} \times 2^{3}=1001.1_{2}=8+1+0.5=9.5$
5) [Summer 2018 Midterm 1E-G] For the rest of this problem we are working with a new floating point datatype (flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

Sign (1)	Exponent (3)	Mantissa (4)

E) What is the value of the numeral $0 \mathrm{~b} \quad 10101000$ in this representation?

$$
\begin{aligned}
& S=1, E=0 b 010, M=0 b 1000 . \text { Bias }=2^{3-1}-1=3 \\
& (-1)^{1} \times 1.1000_{2} \times 2^{2-3}=-1.1_{2} \times 2^{-1}=-0.11_{2}=-(0.5+0.25)=-0.75
\end{aligned}
$$

F) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in this floating point scheme (binary)?

Largest normalized number, but negative: 0b11101111
G) What will occur if we cast $f l o f=(f l o) \quad \mathbf{x}$ (i.e. try to represent the value stored in x as aflo)? Note: from a previous problem signedchar $\mathbf{x}=0$ b10101000 $=-88$.
Rounding Underflow Overflow None of these
$-88=-(64+16+8)=-\left(2^{6}+2^{4}+2^{3}\right)=-1011000_{2}=-1.0110 \times 2^{6}$
Mantissa fits, but max exponent is $0 \mathrm{~b} 110-$ bias $=6-3=3$.

Floating Point Mathematical Properties

- Not associative: $\quad\left(2+2^{50}\right)-2^{50} \neq 2+\left(2^{50}-2^{50}\right)$
- Not distributive: $\quad 100 \times(0.1+0.2) \neq 100 \times 0.1+100 \times 0.2$
- Not cumulative: $\quad 2^{25}+1+1+1+1 \neq 2^{25}+4$

Exercises:

6) Based on floating point representation, explain why each of the three statements above occurs.

Associative: \quad Only 23 bits of mantissa, so $2+2^{50}=2^{50}$ (2 gets rounded off). So LHS $=0$, RHS $=2$.
Distributive: $\quad 0.1$ and 0.2 have infinite representations in binary point $\left(0.2=0 . \overline{0011}_{2}\right)$, so the LHS and RHS suffer from different amounts of rounding (try it!).

Cumulative: $\quad 1$ is 25 powers of 2 away from 2^{25}, so $2^{25}+1=2^{25}$, but 4 is 23 powers of 2 away from 2^{25}, so it doesn't get rounded off.
7) If x and y are variable type float, give two differentreasons why $(x+2 * y)-y==x+y$ might evaluate to false.
(1) Rounding error: like what is seen in the examples above.
(2) Overflow: if x and y are large enough, then $x+2 * y$ may result in infinity when $x+y$ does not.

