
1

CSE 351 Section 3 – Integers and Floating Point
Welcome back to section, we’re happy that you’re here ☺

Integers and Arithmetic Overflow

Arithmetic overflow occurs when the result of a calculation can’t be represented in the current encoding
scheme (i.e., it lies outside of the representable range of values), resulting in an incorrect value.

• Unsigned overflow: the result lies outside of [UMin, UMax];

an indicator of this is when you add two numbers and the

result is smaller than either number.

• Signed overflow: the result lies outside of [TMin, TMax]; an

indicator of this is when you add two numbers with the

same sign and the result has the opposite sign.

Exercises:

1) Assuming these are all signed two’s complement 6-bit integers, compute the result of each of the following
additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

111111 1 101100 100101 1 001110

No No Yes No

2) Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0x80 causes NEITHER signed nor
unsigned overflow in 8 bits. [Autumn 2019 Midterm 1C]

Unsigned overflow will occur for c > 0x80. Signed overflow can only happen if c is negative (also > 0x80).
Largest is therefore, 0x7F

3) Find the smallest 8-bit numeral (answer in hex) such that c + 0x71 causes signed overflow, but NOT
unsigned overflow in 8 bits. [Autumn 2018 Midterm 1C]

For signed overflow, need (+) + (+) = (−). For no unsigned overflow, need no carryout from MSB. The
first (−) encoding we can reach from 0x71 is 0x80. 0x80 – 0x71 = 0xF.

2

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high
amount of precision, and [3] real arithmetic results (e.g. ∞ and NaN).

IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:

Value = (-1)sign × Mantissa2 × 2Exponent = (-1)S × 1.M2 × 2E-bias

The binary representation for floating point values uses three fields:

• S: encodes the sign of the number (0 for positive, 1 for negative)
• E: encodes the exponent in biased notation with a bias of 2w-1-1
• M: encodes the mantissa (or significand, or fraction) – stores the fractional portion, but does not include

the implicit leading 1.

 S E M
float 1 bit 8 bits 23 bits
double 1 bit 11 bits 52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

E M Meaning

0 anything denormalized number (denorm)

1-254 anything normalized number

255 zero infinity (∞)

255 nonzero not-a-number (NaN)

Exercises:

Bias Notation

1) Suppose that instead of 8 bits, E was only designated 4 bits. What is the bias in this case? 2(4 - 1) – 1 = 7

2) Compare these two representations of E for the following values:

Exponent E (4 bits) E (8 bits)

1 1 0 0 0

1 0 0 0 0 0 0 0

0 0 1 1 1

0 1 1 1 1 1 1 1

-1 0 1 1 0

0 1 1 1 1 1 1 0

Notice any patterns?

The representations are the same except the length of number of repeating bits in the middle are different.

3

Floating Point / Decimal Conversions

3) Let’s say that we want to represent the number 3145728.125 (broken down as 221 + 220 + 2−3)

a. Convert this number to into single precision floating point representation:

0 1 0 0 1 0 1 0 0 1 0

b. How does this number highlight a limitation of floating point representation?
Could only represent 2^21 + 2^20. Not enough bits in the mantissa to hold 2^-3, which caused
rounding.

4) What are the decimal values of the following floats?

0x80000000 0xFF94BEEF 0x41180000

–0 NaN +9.5

 0x41180000 = 0b 0|100 0001 0|001 1000 0…0.
 S = 0, E = 128+2 = 130 → Exponent = E – bias = 3, Mantissa = 1.00112
 1.00112 × 23 = 1001.12 = 8 + 1 + 0.5 = 9.5

5) [Summer 2018 Midterm 1E-G] For the rest of this problem we are working with a new floating point datatype

(flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

Sign (1) Exponent (3) Mantissa (4)

E) What is the value of the numeral 0b 1010 1000 in this representation?

S = 1, E = 0b010, M = 0b1000. Bias = 23-1 – 1 = 3
(−1)1 × 1.10002 × 22−3 = −1.12 × 2−1 = −0.112 = −(0.5 + 0.25) = −0.75

F) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in
this floating point scheme (binary)?

Largest normalized number, but negative: 0b11101111

G) What will occur if we cast flo f = (flo) x (i.e. try to represent the value stored in x as a flo)?
Note: from a previous problem signedchar x = 0b10101000 = -88.

Rounding Underflow Overflow None of these

−88 = −(64 + 16 + 8) = −(26 + 24 + 23) = −10110002 = −1.0110 × 26
Mantissa fits, but max exponent is 0b110 – bias = 6 – 3 = 3.

Floating Point Mathematical Properties

• Not associative: (2 + 250) – 250 ≠ 2 + (250 – 250)

• Not distributive: 100 × (0.1 + 0.2) ≠ 100 × 0.1 + 100 × 0.2

• Not cumulative: 225 + 1 + 1 + 1 + 1 ≠ 225 + 4

Exercises:
6) Based on floating point representation, explain why each of the three statements above occurs.

4

Associative: Only 23 bits of mantissa, so 2 + 250 = 250 (2 gets rounded off). So LHS = 0, RHS = 2.

Distributive: 0.1 and 0.2 have infinite representations in binary point (0.2 = 0. 0011̅̅ ̅̅ ̅̅ ̅
2), so the LHS and

RHS suffer from different amounts of rounding (try it!).

Cumulative: 1 is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 is 23 powers of 2 away from 225, so
it doesn’t get rounded off.

7) If x and y are variable type float, give two different reasons why (x+2*y)-y==x+y might evaluate to false.

(1) Rounding error: like what is seen in the examples above.
(2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.

