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CSE 351 Section 3 – Integers and Floating Point 
Welcome back to section, we’re happy that you’re here ☺ .. . .. .. .. . .. 

Integers and Arithmetic Overflow 

Arithmetic overflow occurs when the result of a calculation can’t be represented in the current encoding 
scheme (i.e., it lies outside of the representable range of values), resulting in an incorrect value. 

• Unsigned overflow: the result lies outside of [UMin, UMax]; 

an indicator of this is when you add two numbers and the 

result is smaller than either number.  

• Signed overflow: the result lies outside of [TMin, TMax]; an 

indicator of this is when you add two numbers with the 

same sign and the result has the opposite sign. 

 

 

Exercises:  

1) Assuming these are all signed two’s complement 6-bit integers, compute the result of each of the following 
additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C] 

 
111111 1 101100 100101 1 001110 

No No Yes No 

 

2) Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0x80 causes NEITHER signed nor 
unsigned overflow in 8 bits.  [Autumn 2019 Midterm 1C] 
 
Unsigned overflow will occur for c > 0x80. Signed overflow can only happen if c is negative (also > 0x80). 
Largest is therefore, 0x7F 
 

3) Find the smallest 8-bit numeral (answer in hex) such that c + 0x71 causes signed overflow, but NOT 
unsigned overflow in 8 bits. [Autumn 2018 Midterm 1C] 
 
For signed overflow, need (+) + (+) = (−). For no unsigned overflow, need no carryout from MSB. The 
first (−) encoding we can reach from 0x71 is 0x80. 0x80 – 0x71 = 0xF.  
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Goals of Floating Point 

Representation should include:  [1] a large range of values (both very small and very large numbers),   [2] a high 
amount of precision, and  [3] real arithmetic results (e.g.  ∞ and NaN). 

IEEE 754 Floating Point Standard 

The value of a real number can be represented in scientific binary notation as:   

Value = (-1)sign × Mantissa2 × 2Exponent = (-1)S × 1.M2 × 2E-bias 

The binary representation for floating point values uses three fields: 

• S:  encodes the sign  of the number (0 for positive, 1 for negative) 
• E:  encodes the exponent  in biased notation with a bias of 2w-1-1 
• M:  encodes the mantissa (or significand, or fraction) – stores the fractional portion, but does not include 

the implicit leading 1.  
 

 S E M 
float 1 bit 8 bits 23 bits 
double 1 bit 11 bits 52 bits 

 
How a float is interpreted depends on the values in the exponent and mantissa fields: 

E M Meaning 

0 anything denormalized number (denorm) 

1-254 anything normalized number 

255 zero infinity (∞) 

255 nonzero not-a-number (NaN) 

 
Exercises: 
 

Bias Notation 
 

1) Suppose that instead of 8 bits, E was only designated 4 bits. What is the bias in this case?  2(4 - 1) – 1 = 7 
 

2) Compare these two representations of E for the following values: 
 

Exponent E (4 bits) E (8 bits) 

1 1 0 0 0 
 

1 0 0 0 0 0 0 0 
 

0 0 1 1 1 
 

0 1 1 1 1 1 1 1 
 

-1 0 1 1 0 
 

0 1 1 1 1 1 1 0 
 

 
 
Notice any patterns? 
 
The representations are the same except the length of number of repeating bits in the middle are different. 
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Floating Point / Decimal Conversions 
 
3)   Let’s say that we want to represent the number 3145728.125 (broken down as 221 + 220 + 2−3) 

a. Convert this number to into single precision floating point representation: 

0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

b. How does this number highlight a limitation of floating point representation? 
Could only represent 2^21 + 2^20. Not enough bits in the mantissa to hold 2^-3, which caused 
rounding. 

4) What are the decimal values of the following floats? 

0x80000000 0xFF94BEEF 0x41180000 
   

–0 NaN +9.5 
 
 0x41180000 = 0b 0|100 0001 0|001 1000 0…0.  
 S = 0, E = 128+2 = 130 → Exponent = E – bias = 3, Mantissa = 1.00112 
 1.00112 × 23 = 1001.12 = 8 + 1 + 0.5 = 9.5 
 
5) [Summer 2018 Midterm 1E-G] For the rest of this problem we are working with a new floating point datatype 

(flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields: 

Sign (1) Exponent (3) Mantissa (4) 
 

E) What is the value of the numeral 0b 1010 1000 in this representation? 

S = 1, E = 0b010, M = 0b1000.  Bias = 23-1 – 1 = 3 
(−1)1 × 1.10002 × 22−3 = −1.12 × 2−1 = −0.112 = −(0.5 + 0.25) = −0.75 

 
F) What is the encoding of the most negative real number that we can represent (∞ is not a real number) in 
this floating point scheme (binary)? 
 

Largest normalized number, but negative: 0b11101111 
 

G) What will occur if we cast flo f = (flo) x (i.e. try to represent the value stored in x as a flo)? 
Note: from a previous problem signedchar x = 0b10101000 = -88. 

 

Rounding Underflow Overflow None of these 
    

−88 = −(64 + 16 + 8) = −(26 + 24 + 23) = −10110002 = −1.0110 × 26 
Mantissa fits, but max exponent is 0b110 – bias = 6 – 3 = 3. 

Floating Point Mathematical Properties 

• Not associative: (2 + 250) – 250 ≠ 2 + (250 – 250) 

• Not distributive: 100 × (0.1 + 0.2) ≠ 100 × 0.1 + 100 × 0.2 

• Not cumulative: 225 + 1 + 1 + 1 + 1 ≠ 225 + 4 
 
Exercises: 
6) Based on floating point representation, explain why each of the three statements above occurs. 
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Associative: Only 23 bits of mantissa, so 2 + 250 = 250 (2 gets rounded off).  So LHS = 0, RHS = 2. 

Distributive: 0.1 and 0.2 have infinite representations in binary point (0.2 =  0. 0011̅̅ ̅̅ ̅̅ ̅
2), so the LHS and 

RHS suffer from different amounts of rounding (try it!). 

Cumulative: 1 is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 is 23 powers of 2 away from 225, so 
it doesn’t get rounded off. 

 
 
 
 
7) If x and y are variable type float, give two different reasons why (x+2*y)-y==x+y might evaluate to false. 

 
(1) Rounding error:  like what is seen in the examples above. 
(2)  Overflow:  if x and y are large enough, then x+2*y may result in infinity when x+y does not. 

 


