## CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here ©

## Integers and Arithmetic Overflow

Arithmetic overflow occurs when the result of a calculation can't be represented in the current encoding scheme (i.e., it lies outside of the representable range of values), resulting in an incorrect value.

- Unsigned overflow: the result lies outside of [UMin, UMax]; an indicator of this is when you add two numbers and the result is smaller than either number.
- Signed overflow: the result lies outside of [TMin, TMax]; an indicator of this is when you add two numbers with the same sign and the result has the opposite sign.



## Exercises:

1) Assuming these are all signed two's complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

| 001001 | 110001 | 011001 | 101111 |
| ---: | ---: | ---: | ---: |
| +110110 | +111011 | +001100 | 011111 |

2) Find the largest 8-bit unsigned numeral (answer in hex) such that $\mathrm{c}+0 \mathrm{x} 80$ causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn 2019 Midterm 1C]
3) Find the smallest 8 -bit numeral (answer in hex) such that $\mathrm{c}+0 \times 71$ causes signed overflow, but NOT unsigned overflow in 8 bits. [Autumn 2018 Midterm 1C]

## Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (e.g. $\infty$ and NaN ).

## IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:

$$
\text { Value }=(-1)^{\text {sign }} \times \text { Mantissa }_{2} \times 2^{\text {Exponent }}=(-1)^{\mathrm{S}} \times 1 . \mathrm{M}_{2} \times 2^{\mathrm{E} \text {-bias }}
$$

The binary representation for floating point values uses three fields:

- S: encodes the sign of the number ( 0 for positive, 1 for negative)
- E: encodes the exponent in biased notation with a bias of $2^{w-1}-1$
- M: encodes the mantissa (or significand, or fraction) - stores the fractional portion, but does not include the implicit leading 1.

|  | $\mathbf{S}$ | $\mathbf{E}$ | $\mathbf{M}$ |
| :--- | :---: | :---: | :---: |
|  | float | 1 bit | 8 bits |
| double | 1 bit | 11 bits | 23 bits |
|  |  |  | 52 bits |

How a float is interpreted depends on the values in the exponent and mantissa fields:

| $\mathbf{E}$ | $\mathbf{M}$ | Meaning |
| :---: | :---: | :---: |
| 0 | anything | denormalized number (denorm) |
| $1-254$ | anything | normalized number |
| 255 | zero | infinity ( $\infty$ ) |
| 255 | nonzero | not-a-number (NaN) |

## Exercises:

## Bias Notation

1) Suppose that instead of 8 bits, $E$ was only designated 4 bits. What is the bias in this case?
2) Compare these two representations of $E$ for the following values:

| Exponent | E (4 bits) |  |  |  | E (8 bits) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| -1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Notice any patterns?

## Floating Point / Decimal Conversions

3) Let's say that we want to represent the number 3145728.125 (broken down as $2^{21}+2^{20}+2^{-3}$ )
a. Convert this number to into single precision floating point representation:

b. How does this number highlight a limitation of floating point representation?
4) What are the decimal values of the following floats?

$$
0 \times 80000000
$$

0xFF94BEEF
0x41180000
5) [Summer 2018 Midterm 1E-G] For the rest of this problem we are working with a new floating point datatype (flo) that follows the same conventions as IEEE 754 except using 8 bits split into the following fields:

| Sign (1) | Exponent (3) | Mantissa (4) |
| :--- | :--- | :--- |

E) What is the value of the numeral Ob 10101000 in this representation?
F) What is the encoding of the most negative real number that we can represent ( $\infty$ is not a real number) in this floating point scheme (binary)?
G) What will occur if we cast $f l o f=(f l o) \quad \mathbf{x}$ (i.e. try to represent the value stored in x as $\mathrm{f} f \mathrm{l} \circ$ )? Note: from a previous problem signedchar $\mathbf{x}=0 \mathrm{~b} 10101000=-88$.

Rounding Underflow Overflow None of these

## Floating Point Mathematical Properties

- Not associative: $\quad\left(2+2^{50}\right)-2^{50} \neq 2+\left(2^{50}-2^{50}\right)$
- Not distributive: $100 \times(0.1+0.2) \neq 100 \times 0.1+100 \times 0.2$
- Not cumulative: $\quad 2^{25}+1+1+1+1 \neq 2^{25}+4$


## Exercises:

6) Based on floating point representation, explain why each of the three statements above occurs.
7) If $x$ and $y$ are variable type float, give two differentreasons why $(x+2 * y)-y==x+y$ might evaluate to false.

IEEE 754 Float (32 bit) Flowchart


