YA/ UNIVERSITY of WASHINGTON

Floating Point Ii

CSE 351 Autumn 2020

Instructor:
Justin Hsia

Teaching Assistants:
Aman Mohammed

Ami Oka
Callum Walker
Cosmo Wang
Hang Do

Jim Limprasert
Joy Dang

Julia Wang
Kaelin Laundry
Kyrie Dowling
Mariam Mayanja
Shawn Stanley
Yan Zhe Ong

LO7: Floating Point Il

WELCOME TO
THE SECRET

ROBOT INTERNET

CSE351, Autumn 2020

Prove you are human:

0.1+0.2=7?

0.30000000000000004

http://www.smbc-comics.com/?id=2999

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Administrivia
+» hwo6 due Friday, hw7 due Monday

+» Lab 1a: last chance to submit is tonight @ 11:59 pm
= Make sure you check the Gradescope autograder output!
= Grades hopefully released by end of Sunday (10/18)

+» Lab 1b due Monday (10/19)

"= Submitaisle manager.c, store client.c, and
lablBreflect.txt

+ Section tomorrow on Integers and Floating Point

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Reading Review

+» Terminology:

= Special cases
- Denormalized numbers
. +o0
- Not-a-Number (NaN)
" Limits of representation
- Overflow
- Underflow
- Rounding

+» Questions from the Reading?

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Review Questions

+» What is the value of the following floats?

" 0x00000000
" OxFF800000

+ For the following code, what is the smallest value of n
that will encounter a limit of representation?

float £ = 1.0; // 270
for (int 1 = 0; 1 < n; ++1)

f *= 1024; // 1024 = 2710
printf ("f = %$f\n", f);

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Floating Point Encoding Summary

E M Interpretation
0x00 0 +0
0x00 non-zero + denorm num
0x01 — OxFE anything + norm num
OxFF 0 t oo
OxFF non-zero NaN

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II

Special Cases

+» But wait... what happened to zero?

Special case: E and M all zeros =0
Two zeros! But at least 0x00000000 = 0 like integers

» E=0xFF, M =0: + o0

e.g., division by O
Still work in comparisons!

+» E=0xFF, M #0: Not a Number (NaN)

e.g., square root of negative number, 0/0, co—co
NaN propagates through computations
Value of M can be useful in debugging

CSE351, Autumn 2020

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II

New Representation Limits

+» New largest value (besides o0)?

E = OxFF has now been taken!
E = OXFE has largest: 1.1...1,x21%7 = 2128 2104

+ New numbers closest to O:

E = 0x00 taken; next smallest is E = 0x01

I b
a=1.0..0,x2126 = 2-126 Gaps |
b = 1.0...01,x2126 = 2126 4 2149~ 0t

d

Normalization and implicit 1 are to blame
Special case: E =0, M # 0 are denormalized numbers

CSE351, Autumn 2020

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers
" Noleading 1
= Uses implicit exponent of =126 even though E = 0x00

+» Denormalized numbers close the gap between zero

and the smallest normalized number
So much

tW0x2_126 =+ 27126 / closerto 0
= Smallest denorm: + 0.0...01,,, %2126 = + 2-149

- There is still a gap between zero and the smallest denormalized
number

= Smallest norm: +1.0...0

two

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Floating Point Interpretation Flow Chart

all O’s

P (—1)° X

all 1's | What is the 1 anything > NaN
value of M? | else
b Bite What is the 1 » (—1)5 X 0.M x 21~bias
value of E? J all 0’s

»{ (—1)5 x 1.M x 2E-bias

anything else

= special case

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Floating point topics

+» Fractional binary numbers

+ |EEE floating-point standard

+» Floating-point operations and rounding
+ Floating-point in C

% There are many more details that we won’t cover
" |t's a 58-page standard...

10

YA/ UNIVERSITY of WASHINGTON

Tiny Floating Point Representation

+» We will use the fol
representation to |

LO7: Floating Point Il

owing 8-bit floating point
lustrate some key points:

S

E

M

1

+» Assume that it has the same properties as |IEEE

floating point:

= bias =

" encoding of —0 =
= encoding of 400 =

" encoding of the largest (+) normalized # =
" encoding of the smallest (+) normalized # =

4

3

CSE351, Autumn 2020

11

YA/ UNIVERSITY of WASHINGTON

LO7: Floating Point Il

CSE351, Autumn 2020

Distribution of Values

+» What ranges are NOT representable?

"= Between largest norm and infinity Overflow (Exp too large)

= Between zero and smallest denorm Underflow (Exp too small)

= Between norm numbers? Rounding

+» Given a FP number, what’s the next largest
representable number?
= What is this “step” when Exp =0?
" What is this “step” when Exp = 100?

« Distribution of values is denser toward zero

Kk A A A A A A AAAAMMMEENMMA A A A A —A—A A A A A
-15 -10 -5 0 5

¢ Denormalized A Normalized Infinity

A—
10 15

12

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

material

. . . This is extra
Floating Point Rounding (non-testable)

+» The |[EEE 754 standard actually specifies different
rounding modes:
"= Round to nearest, ties to nearest even digit
= Round toward +oo (round up)
= Round toward —oo (round down)
= Round toward O (truncation)

+ In our tiny example:
= Man =1.001 01 rounded to M = 0b001
" Man=1.001 11 rounded to M = 0b010
" Man =1.001 10 rounded to M = 0b010
" Man =1.000 10 rounded to M = 0b000

13

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II

Floating Point Operations: Basic Idea

Value = (-1)"xMantissax2Fxponent

E M

X +¢ Y

Round (x + V)

X ¥y Round (x * vy)
+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into the specified
precision (width of M)

- Possibly over/underflow if exponent outside of range

CSE351, Autumn 2020

14

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Mathematical Properties of FP Operations

+» Overflow yields 00 and underflow yields 0

+ Floats with value +c0 and NaN can be used in
operations
= Result usually still £00 or NaN, but not always intuitive

+ Floating point operations do not work like real math,
due to rounding

" Not associative: (3.14+1e100)-1e100 != 3.14+(1el00-1e100)
0 3.14
= Not distributive: 100*(0.1+0.2) !'= 100*0.1+100%0.2
30.000000000000003553 30

"= Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

15

YA/ UNIVERSITY of WASHINGTON

LO7: Floating Point Il

CSE351, Autumn 2020

Floating Point Encoding Flow Chart

Value v to
encode

= special case

Isv nota | NO
number?
Yes

NaN
E=alll’s
M # all 0’s

+0 Yes
E=all0s [€
M = all Q’s

é N
Is |v|, when No
rounded,
> FOver?
Yesi
+ o0
E=alll’s
M =all0’s
\ 4
é) a)
Is |v|, when ves | IS |lv|, when
rounded, 4= rounded,
FUnder? FDenorm?
g < FUnde y \< eno g
*No *No
Denormed Normed
E=all0’s E = Exp + bias
0.M = Man 1.M = Man

16

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

This is extra

Limits of Interest (non-testable)

material

+» The following thresholds will help give you a sense of
when certain outcomes come into play, but don’t
worry about the specifics:

= FOver = Zbias+1 — 28

- This is just larger than the largest representable normalized number

* FDenorm = 21~bias - -6

- This is the smallest representable normalized number

" FUnder = 21~bias=m _ -9
- m is the width of the mantissa field
- This is the smallest representable denormalized number

17

YA/ UNIVERSITY of WASHINGTON

Polling Question 1

+» Using our 8-bit representation, what value gets

LO7: Floating Point Il

CSE351, Autumn 2020

stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

mOooO®mP

+ 2.625
+ 2.75

. +3.25
We're lost...

S

E

M

1

4

3

18

YA/ UNIVERSITY of WASHINGTON

Polling Question 2

+» Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28+ 277

mOooO®mP

+ 384

+ OO

. NaN
We're lost...

LO7: Floating Point Il

S

E

M

1

4

3

CSE351, Autumn 2020

19

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Floating Point in C 111

+» Two common levels of precision:

float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

» #include <math.h> toget INFINITY and NAN
constants

» #include <float.hs> for additional constants

L)

Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

20

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Floating Point Conversions in C 111

+» Casting between int, float, and double changes
the bit representation

" Int - float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

" Intorfloat — double

- Exact conversion (all 32-bit ints are representable)

" long — double
- Depends on word size (32-bit is exact, 64-bit may be rounded)

" doubleorfloat — 1int
- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to TMin

(even if the value is a very big positive)
21

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Challenge Question

+ We execute the following code in C. How many bytes
are the same (value and position) between 1 and £7?
" No voting

int i1 =
float £

384; // 278 + 277
= (float) 1i;

1 byte

2 bytes

. 3 bytes
We're lost...

mOooO®mP

22

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point Ii CSE351, Autumn 2020

Floating Point Summary

+ Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
- Some “simple fractions” have no exact representation (e.g., 0.2)
- “Every operation gets a slightly wrong result”

+ Floating point arithmetic not associative or

distributive

®= Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between ints and £loats!

23

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Number Representation Really Matters

@,
0‘0

1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

= |imited (decimal) representation: overflow, wrap-around

L)

*

@,
0‘0

L)

*

2038: Unix epoch rollover

" Unix epoch =seconds since 12am, January 1, 1970

" signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

= 1982: Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug (S475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

D)

%

24

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II

Summary
E M Meaning
0x00 0 +0
0x00 non-zero + denorm num
0x01 — OxFE anything + norm num
OxFF 0 t oo
OxFF non-zero NaN

+ Floating point encoding has many limitations
= QOverflow, underflow, rounding

®= Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

" Floating point arithmetic is NOT associative or distributive

+» Converting between integral and floating point data
types does change the bits

CSE351, Autumn 2020

25

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

BONUS SLIDES

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

26

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Tiny Floating Point Example

E M
1 4 3

+ 8-bit Floating Point Representation
" The sign bit is in the most significant bit (MSB)
" The next four bits are the exponent, with a bias of 241-1 =7
= The last three bits are the mantissa

+» Same general form as IEEE Format
"= Normalized binary scientific point notation
= Similar special cases for 0, denormalized numbers, NaN, oo

27

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Dynamic Range (Positive Only)

S E M Exp Value
0O 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
0O 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512 smallest norm
0O 0001 001 -6 9/8*1/64 = 9/512
O 0110 110 -1 14/8*1/2 = 14/16
_ 0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
NarmalizedBSS o Noai o0 0 8/8%1 = 1
T 2EE 0 0111 001 O 9/8%1 = 9/8 closest to 1 above
O 0111 010 0 10/8*1 = 10/8
O 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240 largest norm

0 1111 000 n/a inf

28

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II CSE351, Autumn 2020

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

% Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
= Must consider0-=0*=0
= NaNs problematic

- Will be greater than any other values
- What should comparison yield?

= Otherwise OK
- Denorm vs. normalized
« Normalized vs. infinity

29

