Floating Point II

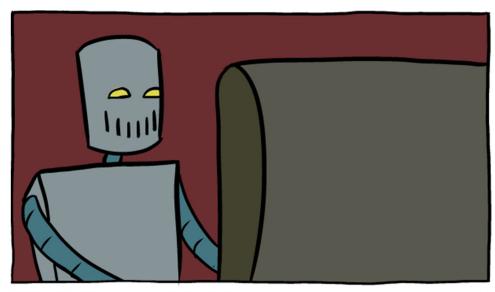
CSE 351 Autumn 2020

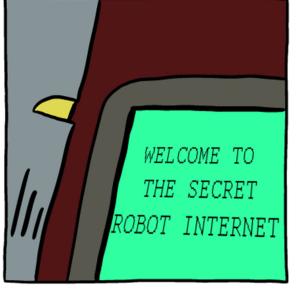
Instructor:

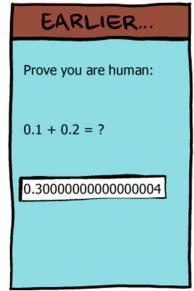
Justin Hsia

Teaching Assistants:

Aman Mohammed Ami Oka Callum Walker Cosmo Wang Hang Do Jim Limprasert Joy Dang Julia Wang **Kaelin Laundry Kyrie Dowling** Mariam Mayanja **Shawn Stanley** Yan Zhe Ong







http://www.smbc-comics.com/?id=2999

Administrivia

- hw6 due Friday, hw7 due Monday
- Lab 1a: last chance to submit is tonight @ 11:59 pm
 - Make sure you check the Gradescope autograder output!
 - Grades hopefully released by end of Sunday (10/18)
- Lab 1b due Monday (10/19)
 - Submit aisle_manager.c, store_client.c, and lab1Breflect.txt
- Section tomorrow on Integers and Floating Point

Reading Review

- Terminology:
 - Special cases
 - Denormalized numbers
 - ±∞
 - Not-a-Number (NaN)
 - Limits of representation
 - Overflow
 - Underflow
 - Rounding
- Questions from the Reading?

Review Questions

What is the value of the following floats?

$$0 \times 000000000 \Rightarrow S=0, E=0, M=0 \Rightarrow |+0|$$

For the following code, what is the smallest value of n that will encounter a limit of representation?

float
$$f = 1.0$$
; // 2^0
for (int $i = 0$; $i < n$; $++i$)
$$f *= 1024$$
; // $1024 = 2^10$

$$printf("f = %f\n", f)$$
;
$$E_{mex} = 0 \times FE$$
, $E_{xp_{mex}} = 254 - 127 = 127$

$$E_{mex} = 13$$
, we hit 2^{130} , which causes overflow always $M = 0$

Floating Point Encoding Summary

	E	M	Interpretation
smallest E { (all 0's)	0x00	0	± 0
	0x00	non-zero	± denorm num
everything { else	0x01 – 0xFE	anything	± norm num
largest E (all 1's)	OxFF	0	± ∞
	OxFF	non-zero	NaN

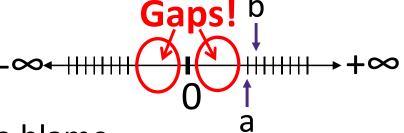
Special Cases

- But wait... what happened to zero?
 - Special case: E and M all zeros = 0
- \star E = 0xFF, M = 0: $\pm \infty$
 - e.g., division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g., square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)

New Representation Limits

- * New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xF,E has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$
- New numbers closest to 0:
 - E = 0x00 taken; next smallest is E = 0x01

 - a = $1.0...0_2 \times 2^{-126} = 2^{-126}$ b = $1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$



- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers (0.M) 1.M normalized:

Denorm Numbers

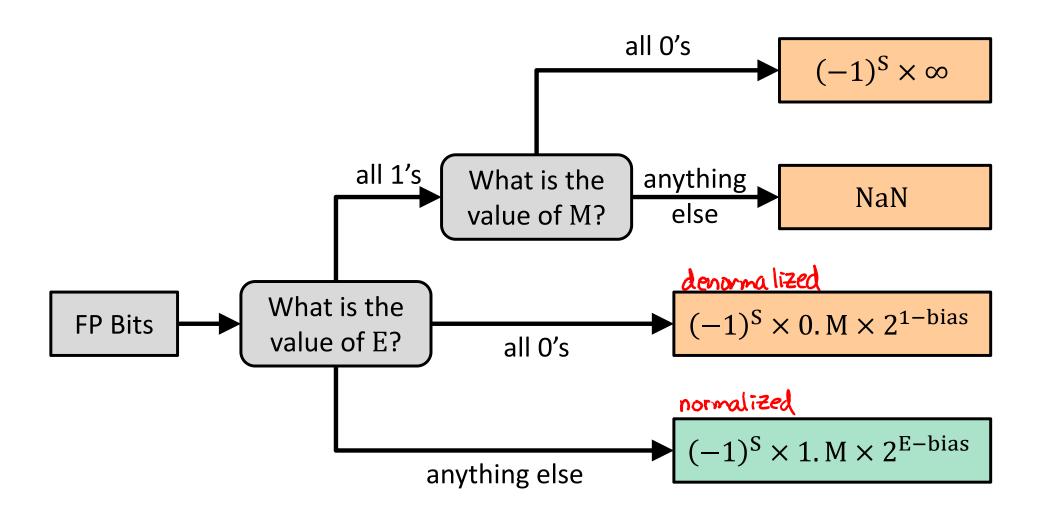
This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Floating Point Interpretation Flow Chart



Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Tiny Floating Point Representation

• We will use the following 8-bit floating point representation to illustrate some key points:



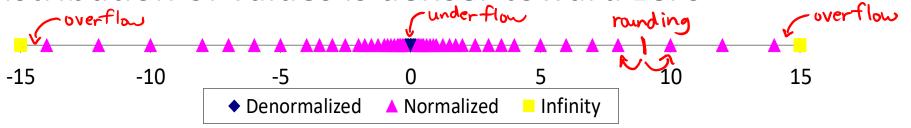
- Assume that it has the same properties as IEEE floating point:
 - bias = $2^{w-1}-1 = 2^{n-1}-1 = 7$
 - encoding of -0 = 0 1 0000 $\infty = 0 \times 80$ encoding of $+\infty = 0$ 0 111/1 $000 = 0 \times 78$

 - encoding of the largest (+) normalized # = 0b 0 111/0 111 = 0x77
 - encoding of the smallest (+) normalized # = $060 \times 00/1 \times 00=0 \times 08$

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow (Exp too large)
 - Between zero and smallest denorm Underflow (Exp too small)
 - Between norm numbers? Rounding
- ❖ Given a FP number, what's the next largest representable number?

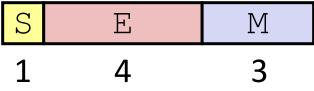
 if M=050...00, then $2^{\text{Exp}} \times 1.0$ if M=060...01, then $2^{\text{Exp}} \times (1+2^{-23})$
 - What is this "step" when Exp = 0? 2^{-23}
 - What is this "step" when Exp = 100?
 2***
- Distribution of values is denser toward zero



Floating Point Rounding

This is extra (non-testable) material

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward —∞ (round down)
 - Round toward 0 (truncation)
- In our tiny example:



- Man = 1.001/01 rounded to M = 0b001 ()
- Man = 1.001/11 rounded to M = 0b010 (40)
- Man = 1.001/10 rounded to M = 0b010 (we)
- Man = 1.000/10 rounded to M = $0b000^{\circ}$ (406)

Floating Point Operations: Basic Idea

Value =
$$(-1)^{s}$$
×Mantissa×2^{Exponent}

$$\star x +_f y = Round(x + y)$$

$$\star x \star_f y = Round(x \star y)$$

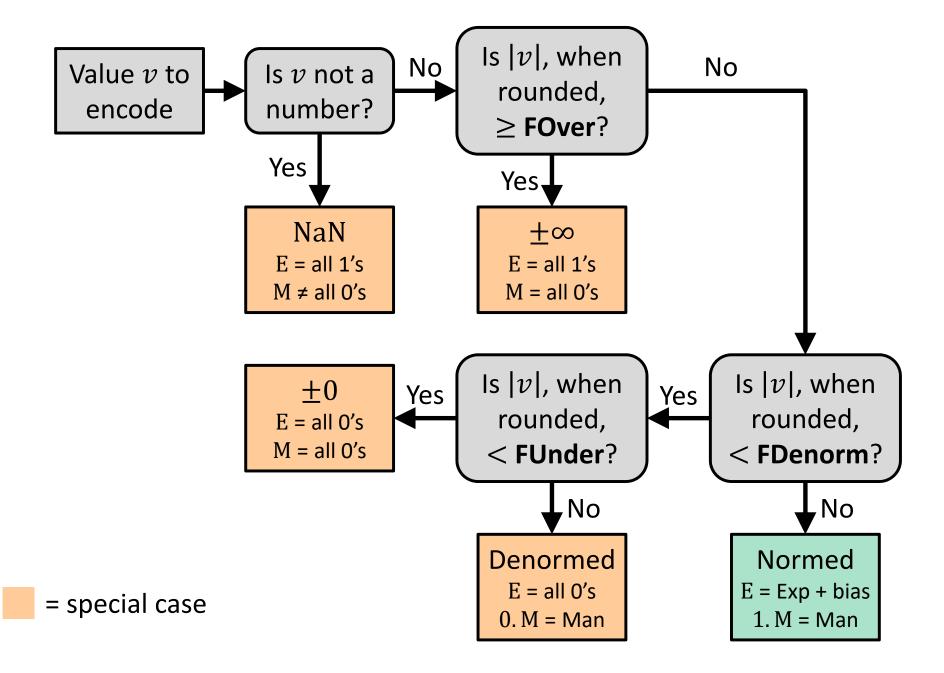
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

- * Overflow yields $\pm \infty$ and underflow yields 0
- ❖ Floats with value ±∞ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math,
 due to rounding

 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
 30.00000000000003553 30
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Floating Point Encoding Flow Chart



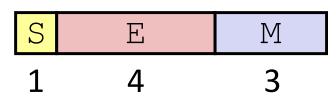
Limits of Interest

This is extra (non-testable) material

- The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
 - **FOver** = $2^{bias+1} = 2^8$
 - This is just larger than the largest representable normalized number
 - **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number
 - FUnder = $2^{1-\text{bias}-m} = 2^{-9}$
 - m is the width of the mantissa field
 - This is the smallest representable denormalized number

Polling Question 1

❖ Using our 8-bit representation, what value gets stored when we try to encode 2.625 = 2¹ + 2⁻¹ + 2⁻³?



$$= 2^{1} (1 + 2^{2} + 2^{-4})$$
$$= 2^{1} \times 1.0101_{2}$$

$$B. + 2.625$$

$$C. + 2.75$$

$$D. + 3.25$$

$$S = O$$

$$E = Exp + bias$$

$$= 1 + 7 = 8$$

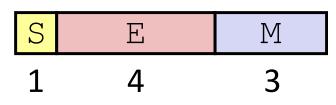
$$= Ob 1000$$

$$\frac{1 = 06 \ 010/1}{2 \ \text{can only store}}$$

$$\frac{3 \ \text{bits!}}{3 \ \text{bits!}}$$

Polling Question 2

* Using our **8-bit** representation, what value gets stored when we try to encode **384** = $2^8 + 2^7$? = $2^8 (1 + 2^4)$



$$A. + 256$$

$$B. + 384$$

- D. NaN
- E. We're lost...

Floating Point in C

Two common levels of precision:

float	1.0f	single precision (32-bit)
double	1.0	double precision (64-bit)

- #include <math.h> to get INFINITY and NAN constants
- #include <float.h> for additional constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

 instead use abs $(f1-f2) < 2^{-20}$

Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints are representable)
 - long → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to TMin (even if the value is a very big positive)

Challenge Question

- ❖ We execute the following code in C. How many bytes are the same (value and position) between i and f?
 - No voting

```
int i = 384; // 2^8 + 2^7
float f = (float) i;
```

- A. 0 bytes
- B. 1 byte
- C. 2 bytes
- D. 3 bytes
- E. We're lost...

```
1 stored as 0x 00 00 01 80
f stored as 0x 43 co 00 00
```

F=8+127=135

= 011000 0111

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Summary

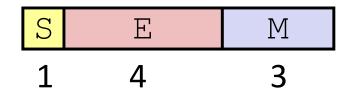
E	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types does change the bits

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example



- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value	
	0 0000	000	- 6	0	
	0 0000	001	- 6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	- 6	2/8*1/64 = 2/512	
numbers	•••				
	0 0000	110	- 6	6/8*1/64 = 6/512	
	0 0000	111	- 6	7/8*1/64 = 7/512	largest denorm
	0 0001	000	- 6	8/8*1/64 = 8/512	smallest norm
	0 0001	001	- 6	9/8*1/64 = 9/512	
	•••				
	0 0110	110	-1	14/8*1/2 = 14/16	
Na weedined	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	. 000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	•••				
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Special Properties of Encoding

- ❖ Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity