YA/ UNIVERSITY of WASHINGTON

Integers I

CSE 351 Autumn 2020

LO5: Integers Il

CSE351, Autumn 2020

Instructor: Teaching Assistants:
Justin Hsia Aman Mohammed Ami Oka Callum Walker
Cosmo Wang Hang Do Jim Limprasert
Joy Dang Julia Wang Kaelin Laundry
Kyrie Dowling Mariam Mayanja Shawn Stanley
Yan Zhe Ong
loei .o e 1,306... 1,307. .. L 32767...-32,768...| | .. -32,767...-32,766 ...

Fro

=

s
e

=

5

2 g

=5

http://xkcd.com/571/

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Administrivia
+» hwd due 10/12, hw5 due 10/14

+» Lab 1a due Monday (10/12)

" Submitpointer.cand lablAreflect.txt to
Gradescope

+~ Lab 1b released tomorrow, due 10/19

= Bit manipulation on a custom number representation

" Bonus slides at the end of today’s lecture have relevant
examples

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il

CSE351, Autumn 2020

Runnable Code Snippets on Ed

+ Ed allows you to embed runnable code snippets (e.g.,
readings, homework, discussion)

" These are editable and rerunnable!

" Hide compiler warnings, but will show compiler errors and
runtime errors

+» Suggested use

" Good for experimental questions about basic behaviors in C

= NOT entirely consistent with the CSE Linux environment, so
should not be used for any lab-related work

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Reading Review

+» Terminology:
" UMin, UMax, TMin, TMax
= Type casting: implicit vs. explicit
" |Integer extension: zero extension vs. sign extension
" Modular arithmetic and arithmetic overflow
= Bit shifting: left shift, logical right shift, arithmetic right shift

% Questions from the Reading?

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il

CSE351, Autumn 2020

Review Questions

+» What is the value (and encoding) of TMin for a
fictional 6-bit wide integer data type?

%+ Forunsigned char uc = 0xAl;, whatare the
produced data for the cast (short)uc?

+» What is the result of the following expressions?
" (signed char)uc >> 2

" (unsigned char)uc >> 3

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

" What are the 8-bit negative encodings for the following?

00000001 00000010 11000011

+ PPV + PPV + PPV

00000000 00000000 00000000

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

" What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
100000000 100000000 100000000

These are the bitwise complement plus 1!
-x == ~x + 1

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Integers

+» Binary representation of integers
= Unsigned and signed
® CastinginC
+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

CSE351, Autumn 2020

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il

Signed/Unsigned Conversion Visualized

+» Two’s Complement — Unsigned _
® UMax

= Ordering Inversion ® UMax-—1
" Negative — Big Positive

B o F: Tax + 11 ynsigned
TMax > TMax Range

2’s Complement 0 @ *® 0/UMin
Range 1 .J/ B

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Values To Remember

+» Unsigned Values +» Two’s Complement Values
= UMin = 0b00..0 = TMin = 0bl0..0
= 0 — _2W—1
= UMax = 0bll..1 = TMax = 0b01..1
= 2V _ 1 — 2W—1 —1
= —1 = 0bll..1

+» Example: Values forw = 64

UMax 18,446,744,073,709,551,615 L e N N e R)

TMax 9,223,372,036,854,775,807 T OERE FE FE EE 7E ®F 5

TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00
-1 -1 BB B A PSS R B B S

0 0 00 00 00 00 00 00 00 00

10

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

In C: Signed vs. Unsigned

«» Casting

" Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;

= Explicit casting
« tx = (int) ux;
» uy = (unsigned int) ty;

= Implicit casting can occur during assignments or function
calls
o tX = ux;

* uy=ty,;

11

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Casting Surprises 111

+ Integer literals (constants)
= By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned
- Examples: 0U, 4294967259u

+ Expression Evaluation

" When you mixed unsigned and sighed in a single expression,
then signed values are implicitly cast to unsigned

" |Including comparison operators <, >, ==, <=, >=

12

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Practice Question 1

+» Assuming 8-bit data (i.e., bit position 7 is the MSB),
what will the following expression evaluate to?
" UMin =0, UMax =255, TMin=-128, TMax =127

» 127 < (signed char) 128u

13

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Integers

+» Binary representation of integers
"= Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

14

YA/ UNIVERSITY of WASHINGTON

LO5: Integers Il

CSE351, Autumn 2020

Sign Extension

» Task: Given a w-bit signed integer X, convert it to
w+k-bit signed integer X' with the same value

» Rule: Add k copies of sign bit
= Let x; be the i-th digit of X in binary

r
u X — xW_l, na ,xW_l,‘xW_l, xw_z’ ---,xl’ xO'
|

k copies of MSB original X
<€ w >
X oo o
X' oo o oo o
—k >< w >

15

YA/ UNIVERSITY of WASHINGTON

LO5: Integers Il

CSE351, Autumn 2020

Two’s Complement Arithmetic

+» The same addition procedure works for both
unsigned and two’s complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
 Called modular addition: result is sum modulo 2%

16

YA/ UNIVERSITY of WASHINGTON

LO5: Integers Il CSE351, Autumn 2020

Arithmetic Overflow

Bits |Unsigned| Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7/ Vi
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

+» When a calculation produces a result
that can’t be represented in the
current encoding scheme
" |nteger range limited by fixed width

= Can occur in both the positive and negative
directions

+» Cand Java ignore overflow exceptions

"= You end up with a bad value in your
program and no warning/indication... oops!

17

YA/ UNIVERSITY of WASHINGTON

Overflow: Unsigned

» Addition: drop carry bit (—2N)

LO5: Integers Il

CSE351, Autumn 2020

15 1111 1; > S
+ 2 + 0010 14 1111 0000 1
37 20001 13 / 1110 0001 5
1101 0010
. 12 1100 0011 | °
» Subtraction: borrow (+2N) 1\ 1011 Unsigned .
1 :I_ O O O 1 1010 0101
- 9 ~ 0010 10 \ 1001 0110 5
— 1000 0111
?j: 1111 8 7

+2N because of
modular arithmetic

18

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Overflow: Two’s Complement

+» Addition: (+) + (+) = (=) result?
6 0110 _1q 0

+ 3 + 0011 -2
) 1001 -3

1111
1110
1101

0000
0001
0010

-/ =4 1100 Two's o011 \' 3
+ Subtraction: (—)+(—)=(+)? <\ 1011 Complement .
— +
-/ 1001 1010
- 3 - 0011 ~ 6\ 1001 3
— 1000 0111
— 0110
7 Nre=""

For signed: overflow if operands have
same sign and result’s sign is different

19

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Practice Questions 2

+» Assuming 8-bit integers:
" 0x27 =39 (signed) = 39 (unsigned)
" 0xD9 =-39 (signed) = 217 (unsigned)
" 0x7F =127 (signed) = 127 (unsigned)
" 0x81 =-127 (signed) = 129 (unsigned)

+» For the following additions, did signed and/or
unsigned overflow occur?

" O0x27 + 0x81

" Ox7F + 0xDOS

20

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Integers

+» Binary representation of integers
"= Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

21

YA/ UNIVERSITY of WASHINGTON

Shift Operations

+» Throw away (drop) extra bits that “fall off” the end

LO5: Integers Il

+ Left shift (x<<n) bit vector x by n positions
= Fill with 0’s on right

% Right shift (x>>n) bit-vector x by n positions

" Logical shift (for unsigned values)
- Fill with 0’s on left

= Arithmetic shift (for signed values)
- Replicate most significant bit on left (maintains sign of x)

logical:

arithmetic:

X

0010

0010

X<<3

0001

0000

X>>2

0000

1000

X>>2

0000

1000

logical:

arithmetic:

X

1010

0010

X<<3

0001

0000

X>>2

0010

1000

X>>2

1110

1000

CSE351, Autumn 2020

22

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Shift Operations

+ Arithmetic:
" Left shift (x<<n) is equivalent to multiply by 2=

" Right shift (x>>n) is equivalent to divide by 2=

= Shifting is faster than general multiply and divide
operations!

«» Notes:
= Shifts by n<0 or n>w (w is bit width of x) are undefined

" In C: behavior of >> is determined by the compiler
. In gcc / Clang, depends on data type of x (signed/unsigned)

" InJava: logical shiftis >>> and arithmetic shift is >>

23

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Left Shifting Arithmetic 8-bit Example

+» No difference in left shift operation for unsigned and
signed numbers (just manipulates bits)
= Difference comes during interpretation: x*20°7?
Signed Unsighed

/A
L1=x<<2; 0001100100 = 100 100
L2=x<<3; 00011001000 = __-56 200
signedovm
L3=x<<4,;, 000110010000 = =112 144
—

unsigned overflow

24

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Right Shifting Arithmetic 8-bit Examples

<~ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
" |Logical Shift: x/277?

xu = 240u; 11110000 = 240
NN

Rlu=xu>>3; 00011110000 = 30

R2u=xu>>5; 0000011110000 =]

=

rounding (down)

25

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Right Shifting Arithmetic 8-bit Examples

<~ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
= Arithmetic Shift: x/27?

xs = —-16; 11110000 = =160
NN

Rls=xu>>3; 11111110000 = =2

R2s=xu>>5; 1111111110000 = -1

=

rounding (down)

26

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il

Challenge Questions

CSE351, Autumn 2020

For the following expressions, find a value of signed char x,

[if there exists one, that makes the expression True.

+» Assume we are using 8-bit arithmetic:

. EXahele;
" x == (unsigned char) x

Al solutiong:
D T i

|

B >= 128U

B = (x>>2)<<2

[| X == =X
- Hint: there are two solutions

" (x < 1280) && (x > 0Ox3F)

27

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Summary

+ Sign and unsigned variables in C
" Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers

- Type of variables affects behavior of operators (shifting, comparison)

+» We can only represent so many numbers in w bits

1)

" When we exceed the limits, arithmetic overflow occurs
= Sign extension tries to preserve value when expanding

+ Shifting is a useful bitwise operator
= Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

28

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

+ Extract the 2"¥ most significant byte of an int
+» Extract the sign bit of a sighed int

+» Conditionals as Boolean expressions

29

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Using Shifts and Masks

+ Extract the 2"® most significant byte of an int:
" First shift, then mask: (x>>16) & OxFF

X 00000001{00000010[00000011 00000100
x>>16 00000000 00000000 WOOOOOOlO
OxFF 00000000 00000000 00000000 11111111

(x>>16) & OxFF 00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

x 00000001 00000010 00000011 00000100
0xFF0000 00000000 11111111 00000000 00000000

x & 0xFF0000 |[00000000[00000010/00000000 00000000
(x&0xFF0000)>>16 |00000000 00000000 m’[oooooom

30

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Using Shifts and Masks

+» Extract the sign bit of a signed int:
" First shift, then mask: (x>>31) & 0xl1

- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

X OD000001 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 00000070
0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 (00000000 00000000 00000000 00000000

p 4 10000001 00000010 00000011 00000100
x>>31 11111111 11111111 11111111 11111111
0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 (00000000 00000000 00000000 00000001

31

YA/ UNIVERSITY of WASHINGTON LO5: Integers Il CSE351, Autumn 2020

Using Shifts and Masks

+ Conditionals as Boolean expressions
" Forint x, whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 111121111 11111111 11111111
Ix 00000000 00000000 00000000 00000000

I x<<31 00000000 00000000 00000000 00000000
(!'x<<31)>>31 (00000000 00000000 0OOOOO0OO 00000000

= Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?vy:z;
e a=(((x<<31)>>31)&y) | (((!'x<<31)>>31)&z);

32

