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Administrivia
+» hwd due 10/12, hw5 due 10/14

+» Lab 1a due Monday (10/12)

" Submitpointer.cand lablAreflect.txt to
Gradescope

+~ Lab 1b released tomorrow, due 10/19

= Bit manipulation on a custom number representation

" Bonus slides at the end of today’s lecture have relevant
examples
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Runnable Code Snippets on Ed

+ Ed allows you to embed runnable code snippets (e.g.,
readings, homework, discussion)

" These are editable and rerunnable!

" Hide compiler warnings, but will show compiler errors and
runtime errors

+» Suggested use

" Good for experimental questions about basic behaviors in C

= NOT entirely consistent with the CSE Linux environment, so
should not be used for any lab-related work
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Reading Review

+» Terminology:
" UMin, UMax, TMin, TMax
= Type casting: implicit vs. explicit
" |Integer extension: zero extension vs. sign extension
" Modular arithmetic and arithmetic overflow
= Bit shifting: left shift, logical right shift, arithmetic right shift

% Questions from the Reading?
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Review Questions

+» What is the value (and encoding) of TMin for a
fictional 6-bit wide integer data type?

%+ Forunsigned char uc = 0xAl;, whatare the
produced data for the cast (short)uc?

+» What is the result of the following expressions?
" (signed char)uc >> 2

" (unsigned char)uc >> 3
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Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

" What are the 8-bit negative encodings for the following?

00000001 00000010 11000011

+ PPV + PPV + PPV

00000000 00000000 00000000
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Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

bit representation of x

+ bit representation of —x
0 (ignoring the carry-out bit)

" What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
100000000 100000000 100000000

These are the bitwise complement plus 1!
-x == ~x + 1
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Integers

+» Binary representation of integers
= Unsigned and signed
® CastinginC
+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations
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Signed/Unsigned Conversion Visualized

+» Two’s Complement — Unsigned _
® UMax

= Ordering Inversion ® UMax-—1
" Negative — Big Positive

B o F: Tax + 11 ynsigned
TMax > TMax Range

2’s Complement 0 @ *® 0/UMin
Range 1 .J/ B
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Values To Remember

+» Unsigned Values +» Two’s Complement Values
= UMin = 0b00..0 = TMin = 0bl0..0
= 0 — _2W—1
= UMax = 0bll..1 = TMax = 0b01..1
= 2V _ 1 — 2W—1 —1
= —1 = 0bll..1

+» Example: Values forw = 64

UMax 18,446,744,073,709,551,615 L e N N e R )

TMax 9,223,372,036,854,775,807 T OERE FE FE  EE 7E ®F 5

TMin  -9,223,372,036,854,775,808 80 00 00 00 00 00 00 00
-1 -1 BB B A PSS R B B S

0 0 00 00 00 00 00 00 00 00

10
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In C: Signed vs. Unsigned

«» Casting

" Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;

= Explicit casting
« tx = (int) ux;
» uy = (unsigned int) ty;

= Implicit casting can occur during assignments or function
calls
o tX = ux;

* uy=ty,;

11
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Casting Surprises 111

+ Integer literals (constants)
= By default, integer constants are considered signed integers
- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned
- Examples: 0U, 4294967259u

+ Expression Evaluation

" When you mixed unsigned and sighed in a single expression,
then signed values are implicitly cast to unsigned

" |Including comparison operators <, >, ==, <=, >=

12
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Practice Question 1

+» Assuming 8-bit data (i.e., bit position 7 is the MSB),
what will the following expression evaluate to?
" UMin =0, UMax =255, TMin=-128, TMax =127

» 127 < (signed char) 128u

13
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Integers

+» Binary representation of integers
"= Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

14
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Sign Extension

» Task: Given a w-bit signed integer X, convert it to
w+k-bit signed integer X' with the same value

» Rule: Add k copies of sign bit
= Let x; be the i-th digit of X in binary

r
u X — xW_l, na ,xW_l,‘xW_l, xw_z’ ---,xl’ xO'
|

k copies of MSB original X
<€ w >
X oo o
X' oo o oo o
—k >< w >

15
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Two’s Complement Arithmetic

+» The same addition procedure works for both
unsigned and two’s complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
 Called modular addition: result is sum modulo 2%

16
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Arithmetic Overflow

Bits |Unsigned| Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7/ Vi
1000 8 -8
1001 9 -7
1010 10 -6
1011 11 -5
1100 12 -4
1101 13 -3
1110 14 -2
1111 15 -1

+» When a calculation produces a result
that can’t be represented in the
current encoding scheme
" |nteger range limited by fixed width

= Can occur in both the positive and negative
directions

+» Cand Java ignore overflow exceptions

"= You end up with a bad value in your
program and no warning/indication... oops!

17
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Overflow: Unsigned

» Addition: drop carry bit (—2N)
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15 1111 1; > S
+ 2 + 0010 14 1111 0000 1
37 20001 13 / 1110 0001 5
1101 0010
. 12 1100 0011 | °
» Subtraction: borrow (+2N) 1\ 1011 Unsigned .
1 :I_ O O O 1 1010 0101
- 9 ~ 0010 10 \ 1001 0110 5
— 1000 0111
?j: 1111 8 7

+2N because of
modular arithmetic

18
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Overflow: Two’s Complement

+» Addition: (+) + (+) = (=) result?
6 0110 _1q 0

+ 3 + 0011 -2
) 1001 -3

1111
1110
1101

0000
0001
0010

-/ =4 1100 Two's o011 \' 3
+ Subtraction: (—)+(—)=(+)? <\ 1011 Complement .
— +
-/ 1001 1010
- 3 - 0011 ~ 6\ 1001 3
— 1000 0111
— 0110
7 Nre=""

For signed: overflow if operands have
same sign and result’s sign is different

19
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Practice Questions 2

+» Assuming 8-bit integers:
" 0x27 =39 (signed) = 39 (unsigned)
" 0xD9 =-39 (signed) = 217 (unsigned)
" 0x7F =127 (signed) = 127 (unsigned)
" 0x81 =-127 (signed) = 129 (unsigned)

+» For the following additions, did signed and/or
unsigned overflow occur?

" O0x27 + 0x81

" Ox7F + 0xDOS

20
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Integers

+» Binary representation of integers
"= Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

21
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Shift Operations

+» Throw away (drop) extra bits that “fall off” the end

LO5: Integers Il

+ Left shift (x<<n) bit vector x by n positions
= Fill with 0’s on right

% Right shift (x>>n) bit-vector x by n positions

" Logical shift (for unsigned values)
- Fill with 0’s on left

= Arithmetic shift (for signed values)
- Replicate most significant bit on left (maintains sign of x)

logical:

arithmetic:

X

0010

0010

X<<3

0001

0000

X>>2

0000

1000

X>>2

0000

1000

logical:

arithmetic:

X

1010

0010

X<<3

0001

0000

X>>2

0010

1000

X>>2

1110

1000

CSE351, Autumn 2020

22
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Shift Operations

+ Arithmetic:
" Left shift (x<<n) is equivalent to multiply by 2=

" Right shift (x>>n) is equivalent to divide by 2=

= Shifting is faster than general multiply and divide
operations!

«» Notes:
= Shifts by n<0 or n>w (w is bit width of x) are undefined

" In C: behavior of >> is determined by the compiler
. In gcc / Clang, depends on data type of x (signed/unsigned)

" InJava: logical shiftis >>> and arithmetic shift is >>

23
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Left Shifting Arithmetic 8-bit Example

+» No difference in left shift operation for unsigned and
signed numbers (just manipulates bits)
= Difference comes during interpretation: x*20°7?
Signed Unsighed

/A
L1=x<<2; 0001100100 = 100 100
L2=x<<3; 00011001000 = __-56 200
signedovm
L3=x<<4,;, 000110010000 = =112 144
—

unsigned overflow

24
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Right Shifting Arithmetic 8-bit Examples

<~ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
" |Logical Shift: x/277?

xu = 240u; 11110000 = 240
NN

Rlu=xu>>3; 00011110000 = 30

R2u=xu>>5; 0000011110000 = ]

=

rounding (down)

25
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Right Shifting Arithmetic 8-bit Examples

<~ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
= Arithmetic Shift: x/27?

xs = —-16; 11110000 = =160
NN

Rls=xu>>3; 11111110000 = =2

R2s=xu>>5; 1111111110000 = -1

=

rounding (down)

26
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For the following expressions, find a value of signed char x,

[if there exists one, that makes the expression True.

+» Assume we are using 8-bit arithmetic:

. EXahele;
" x == (unsigned char) x

Al solutiong:
D T i

|

B >= 128U

B = (x>>2)<<2

[ | X == =X
- Hint: there are two solutions

" (x < 1280) && (x > 0Ox3F)

27
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Summary

+ Sign and unsigned variables in C
" Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers

- Type of variables affects behavior of operators (shifting, comparison)

+» We can only represent so many numbers in w bits

1)

" When we exceed the limits, arithmetic overflow occurs
= Sign extension tries to preserve value when expanding

+ Shifting is a useful bitwise operator
= Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

28
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BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

+ Extract the 2"¥ most significant byte of an int
+» Extract the sign bit of a sighed int

+» Conditionals as Boolean expressions

29
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Using Shifts and Masks

+ Extract the 2"® most significant byte of an int:
" First shift, then mask: (x>>16) & OxFF

X 00000001{00000010[00000011 00000100
x>>16 00000000 00000000 WOOOOOOlO
OxFF 00000000 00000000 00000000 11111111

(x>>16) & OxFF 00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

x 00000001 00000010 00000011 00000100
0xFF0000 00000000 11111111 00000000 00000000

x & 0xFF0000 |[00000000[00000010/00000000 00000000
(x&0xFF0000)>>16 |00000000 00000000 m’[oooooom

30
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Using Shifts and Masks

+» Extract the sign bit of a signed int:
" First shift, then mask: (x>>31) & 0xl1

- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

X OD000001 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 00000070
0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 (00000000 00000000 00000000 00000000

p 4 10000001 00000010 00000011 00000100
x>>31 11111111 11111111 11111111 11111111
0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 (00000000 00000000 00000000 00000001

31
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Using Shifts and Masks

+ Conditionals as Boolean expressions
" Forint x, whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 111121111 11111111 11111111
Ix 00000000 00000000 00000000 00000000

I x<<31 00000000 00000000 00000000 00000000
(!'x<<31)>>31 (00000000 00000000 0OOOOO0OO 00000000

= Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?vy:z;
e a=(((x<<31)>>31)&y) | (((!'x<<31)>>31)&z);

32



