Administrivia

- hw4 due 10/12, hw5 due 10/14

- Lab 1a due Monday (10/12)
 - Submit `pointer.c` and `lab1Areflect.txt` to Gradescope

- Lab 1b released tomorrow, due 10/19
 - Bit manipulation on a custom number representation
 - Bonus slides at the end of today’s lecture have relevant examples
Runnable Code Snippets on Ed

- Ed allows you to embed runnable code snippets (e.g., readings, homework, discussion)
 - These are *editable* and *rerunnable*!
 - Hide compiler warnings, but will show compiler errors and runtime errors

- Suggested use
 - Good for experimental questions about basic behaviors in C
 - *NOT* entirely consistent with the CSE Linux environment, so should not be used for any lab-related work
Reading Review

- **Terminology:**
 - $\text{UMin}, \text{UMax}, \text{TMin}, \text{TMax}$
 - Type casting: implicit vs. explicit
 - Integer extension: zero extension vs. sign extension
 - Modular arithmetic and arithmetic overflow
 - Bit shifting: left shift, logical right shift, arithmetic right shift

- **Questions from the Reading?**
Review Questions

- What is the value (and encoding) of T_{min} for a fictional 6-bit wide integer data type?

- For `unsigned char uc = 0xA1;`, what are the produced data for the cast `(short)uc`?

- What is the result of the following expressions?
 - `(signed char)uc >> 2`
 - `(unsigned char)uc >> 3`
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

\[
\begin{align*}
\text{bit representation of } x &+ \text{bit representation of } \neg x \\
&= 0 \quad \text{(ignoring the carry-out bit)}
\end{align*}
\]

- What are the 8-bit negative encodings for the following?

\[
\begin{align*}
00000001 &+ ???????? & 00000010 &+ ???????? & 11000011 &+ ???????? \\
00000000 &+ 00000000 & 00000000 &+ 00000000 & 00000000 &+ 00000000
\end{align*}
\]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:

 \[
 \begin{align*}
 \text{bit representation of } x \\
 + \text{bit representation of } -x \\
 0 \quad \text{(ignoring the carry-out bit)}
 \end{align*}
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 00000001 & \quad 00000010 & \quad 11000011 \\
 + 11111111 & + 11111110 & + 00111101 \\
 100000000 & 100000000 & 100000000
 \end{align*}
 \]

 These are the bitwise complement plus 1!

 \[-x == \sim x + 1\]
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive
Values To Remember

- **Unsigned Values**
 - $U_{\text{Min}} = 0b00...0 = 0$
 - $U_{\text{Max}} = 0b11...1 = 2^w - 1$

- **Two’s Complement Values**
 - $T_{\text{Min}} = 0b10...0 = -2^{w-1}$
 - $T_{\text{Max}} = 0b01...1 = 2^{w-1} - 1$
 - $-1 = 0b11...1$

- **Example: Values for $w = 64$**

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned

- **Casting**
 - **Bits are unchanged, just interpreted differently!**
 - **int** tx, ty;
 - **unsigned int** ux, uy;
 - **Explicit casting**
 - tx = (**int**) ux;
 - uy = (**unsigned int**) ty;
 - **Implicit casting** can occur during assignments or function calls
 - tx = ux;
 - uy = ty;
Casting Surprises

- Integer literals (constants)
 - By default, integer constants are considered *signed* integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force *unsigned*
 - Examples: `0U, 4294967259u`

- Expression Evaluation
 - When you mixed unsigned and signed in a single expression, then *signed values are implicitly cast to unsigned*
 - Including comparison operators `<, >, ==, <=, >=`
Practice Question 1

Assuming 8-bit data (i.e., bit position 7 is the MSB), what will the following expression evaluate to?
- UMin = 0, UMax = 255, TMin = -128, TMax = 127

127 < (signed char) 128u
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- **Consequences of finite width representations**
 - Sign extension, overflow

- Shifting and arithmetic operations
Sign Extension

- **Task:** Given a w-bit signed integer X, convert it to $w+k$-bit signed integer X' *with the same value*
- **Rule:** Add k copies of sign bit
 - Let x_i be the i-th digit of X in binary
 - $X' = x_{w-1}, \ldots, x_{w-1}, x_{w-1}, x_{w-2}, \ldots, x_1, x_0$

![Diagram](image.png)
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, discard the highest carry bit
 - Called modular addition: result is sum \(mod 2^w \)
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions

- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>-8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>-7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>-6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>-5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>-4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>-3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>-2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>-1</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition:** drop carry bit (-2^N)

 \[
 \begin{array}{c}
 15 \\
 + \ 2 \\
 \hline
 17 \\
 \end{array}
 \quad \quad \quad \quad
 \begin{array}{c}
 1111 \\
 + \ 0010 \\
 \hline
 10001 \\
 \end{array}

 1

- **Subtraction:** borrow ($+2^N$)

 \[
 \begin{array}{c}
 1 \\
 - \ 2 \\
 \hline
 -1 \\
 \end{array}
 \quad \quad \quad \quad
 \begin{array}{c}
 10001 \\
 - \ 0010 \\
 \hline
 1111 \\
 \end{array}

 15

$\pm 2^N$ because of modular arithmetic
Overflow: Two’s Complement

- **Addition:** $(+)+(+)=(-)$ result?

 $$
 \begin{array}{c}
 6 \\
 + 3 \\
 \hline
 9
 \end{array}
 \quad \begin{array}{c}
 0110 \\
 + 0011 \\
 \hline
 1001
 \end{array}
 \quad \text{result?}
 $$

- **Subtraction:** $(-)+(-)=(+)$?

 $$
 \begin{array}{c}
 -7 \\
 - 3 \\
 \hline
 -10
 \end{array}
 \quad \begin{array}{c}
 1001 \\
 - 0011 \\
 \hline
 0110
 \end{array}
 $$

For signed: overflow if operands have same sign and result’s sign is different
Practice Questions 2

- Assuming 8-bit integers:
 - \(0x27 = 39 \text{ (signed)} = 39 \text{ (unsigned)}\)
 - \(0xD9 = -39 \text{ (signed)} = 217 \text{ (unsigned)}\)
 - \(0x7F = 127 \text{ (signed)} = 127 \text{ (unsigned)}\)
 - \(0x81 = -127 \text{ (signed)} = 129 \text{ (unsigned)}\)

- For the following additions, did signed and/or unsigned overflow occur?
 - \(0x27 + 0x81\)
 - \(0x7F + 0xD9\)
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- **Shifting and arithmetic operations**
Shift Operations

- Throw away (drop) extra bits that “fall off” the end
- Left shift \((x \ll n)\) bit vector \(x\) by \(n\) positions
 - Fill with 0’s on right
- Right shift \((x \gg n)\) bit-vector \(x\) by \(n\) positions
 - Logical shift (for unsigned values)
 - Fill with 0’s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left (maintains sign of \(x\))

\[
\begin{array}{c|c}
\text{x} & 0010 0010 \\
\text{x\ll3} & 0001 0000 \\
\text{x\gg2} & 0000 1000 \\
\text{logical:} & \text{arithmetic:}
\end{array}
\quad
\begin{array}{c|c}
\text{x} & 1010 0010 \\
\text{x\ll3} & 0001 0000 \\
\text{x\gg2} & 0010 1000 \\
\text{logical:} & \text{arithmetic:}
\end{array}
\]
Shift Operations

- **Arithmetic:**
 - Left shift \((x << n)\) is equivalent to **multiply** by \(2^n\)
 - Right shift \((x >> n)\) is equivalent to **divide** by \(2^n\)
 - Shifting is faster than general multiply and divide operations!

- **Notes:**
 - Shifts by \(n < 0\) or \(n \geq w\) (\(w\) is bit width of \(x\)) are **undefined**
 - **In C:** behavior of \(>>\) is determined by the compiler
 - In gcc / C lang, depends on data type of \(x\) (signed/unsigned)
 - **In Java:** logical shift is \(>>>\) and arithmetic shift is \(>>\)
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: \(x \times 2^n \)?

\[
\begin{align*}
\text{x} &= 25; \quad 00011001 = 25 & \quad \text{Signed} & \quad 25 \quad \text{Unsigned} & \quad 25 \\
L1 &= \text{x}<<2; \quad 0001100100 = 100 & \quad \text{Signed} & \quad 100 \quad \text{Unsigned} & \quad 100 \\
L2 &= \text{x}<<3; \quad 00011001000 = -56 & \quad \text{Signed} & \quad 200 \quad \text{Unsigned} & \quad 200 \\
L3 &= \text{x}<<4; \quad 000110010000 = -112 & \quad \text{Signed} & \quad 144 \quad \text{Unsigned} & \quad 144
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on unsigned values and *arithmetic* shift on signed values.
 - Logical Shift: \(x / 2^n \)?

\[
xu = 240u; \quad 11110000 = 240
\]
\[
R1u = xu >> 3; \quad 00011110000 = 30
\]
\[
R2u = xu >> 5; \quad 0000011110000 = 7
\]

(rounding (down))
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - Arithmetic Shift: \(x / 2^n \)?

\[
x_s = -16; \quad 11110000 = -16
\]
\[
R1s=xu>>3; \quad 111111110000 = -2
\]
\[
R2s=xu>>5; \quad 1111111110000 = -1
\]
Challenge Questions

For the following expressions, find a value of signed char \(x \), if there exists one, that makes the expression True.

- Assume we are using 8-bit arithmetic:
 - \(x == \) (unsigned char) \(x \)
 - \(x >= 128U \)
 - \(x !== (x>>2)<<(2) \)
 - \(x == -x \)
 - Hint: there are two solutions
 - \((x < 128U) \) \&\& \((x > 0x3F) \)
Summary

❖ Sign and unsigned variables in C
 ▪ Bit pattern remains the same, just *interpreted* differently
 ▪ Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 • Type of variables affects behavior of operators (shifting, comparison)

❖ We can only represent so many numbers in \(w \) bits
 ▪ When we exceed the limits, *arithmetic overflow* occurs
 ▪ *Sign extension* tries to preserve value when expanding

❖ Shifting is a useful bitwise operator
 ▪ Right shifting can be arithmetic (sign) or logical (0)
 ▪ Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1b.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- Extract the 2nd most significant \textit{byte} of an \texttt{int}:
 - First shift, then mask: \((x>>16) \& 0xFF\)
 - Or first mask, then shift: \((x \& 0xFF0000) >> 16\)
Using Shifts and Masks

- Extract the *sign bit* of a signed `int`:
 - First shift, then mask: $(x >> 31) \& 0x1$
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th>x</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x >> 31$</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>$0x1$</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>$(x >> 31) & 0x1$</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>10000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x >> 31$</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>$0x1$</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>$(x >> 31) & 0x1$</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Conditionals as Boolean expressions
 - For int \(x \), what does \((x\ll31)\gg31 \) do?

\(x = !!123 \)	00000000 00000000 00000000 00000001
\(x\ll31 \)	10000000 00000000 00000000 00000000
\((x\ll31)\gg31 \)	11111111 11111111 11111111 11111111
\(!x \)	00000000 00000000 00000000 00000000
\(!x\ll31 \)	00000000 00000000 00000000 00000000
\((!x\ll31)\gg31 \)	00000000 00000000 00000000 00000000

- Can use in place of conditional:
 - In C: \(\text{if}(x) \{ \text{a}=y; \} \ \text{else} \ \{ \text{a}=z; \} \) equivalent to \(\text{a}=x?y:z; \)
 - \(a=((x\ll31)\gg31)\&y) \mid ((!x\ll31)\gg31)\&z; \)