Question 6: Cache in While You Can (17 points, 26 Minutes)

Consider a single 4KiB cache with 512B blocks and a write-back policy. Assume a 32-bit address space.

a) If the cache were direct-mapped,

sets)
of rews? # of offset bits?

b) If the cache were 4-way set associative,
line
of tag bits? # of index bits? # of bits per cache slet?

Consider an array of the following location structs:

typedef struct {
... // some undefined number of other struct members
int visited;
int danger;

} location;

location locs[NUM_LOCS];

Here's a piece of code that counts the number of places we've visited. Assume this gets executed
somewhere in the middle of our program, that count is held in a register, and the size of the array is
greater than 4 KiB.

for(int 1 = 0; 1 < NUM_LOCS; i++)
if(locs[i]-visited) count++;

c) What's the fewest possible number of bytes written to main memory?

d) What's the greatest possible number of bytes written to main memory?

Now consider if we store the visited and danger information in individual arrays instead:

int visited[NUM_LOCS];
int danger[NUM_LOCS];

e) This way, the cache can exploit better for the above task.

We can expect a (higher or lower) miss rate

because of the change in the number of (type of cache miss) misses.

justi
Cross-Out

justi
Text Box
sets

justi
Cross-Out

justi
Text Box
line

Consider the following code with NUM_LOCS > 2/10.
for(int 1 = 0; 1 < NUM_LOCS; i++)
if(visited[i] && danger[i] > 5) count++;
Two memory accesses are made per iteration: one into visited, the other into danger. Assume that

the cache has no valid blocks initially. You are told that in the worst case, the cache has a miss rate of
100%. Consider each of the following possible changes to the cache individually.

f) Mark each as E, if it eliminates the chances of this worst-case scenario miss rate, R if it reduces the
chances, or N if it’s not helpful.
e More sets, same block size, same associativity
e Double associativity, half block size, same total cache size

e Everything stays the same but use a write-through policy instead

3) “Cache, money. Dollar bills, y’all.” (24 min, 15 pts)

Suppose we have a standard 32-bit byte-addressed MIPS machine, a single direct-mapped 32KiB
cache, a write-through policy, and a 16B block size.

a) Give the T:1:0 breakup.
b) How many bits are there per ﬁlerx]néon the cache?

Use the C code below and the description of the cache above to answer the questions that follow it.
Suppose that the only memory accesses are accesses and stores to arrays and that all memory
accesses in the code are valid. Assume A starts on a block boundary (byte 0 of A in byte 0 of block).

#define NUM_INTS 32
#define OFFSET 8192 // 8192 = 2°13

int rand(int x, int y); // returns a random integer in the range [X, V)

int main(){
int A[NUM_INTS + OFFSET]; // Assume A starts on a block boundary

// START LOOP 1

for (int count = 0 ; count < NUM_INTS ; count += 1) { // count by Is
A[count] count; // ACCESS #1
A[count + OFFSET] count+count; // ACCESS #2

}
// END LOOP 1

// START LOOP 2
for (int count = 0 ; count < NUM_INTS ; count += 4) { // count by 4s now
for (int r =0 ; r < 4 ; r++) { // .but do it 4 times
printf(“%d”, A[rand(count, count+4)]);

}
}
// END LOOP 2
}
c) Hit rate for Loop 1? What types of misses are there?
d) Hit rate for Loop 27? What types of misses are there?

Questions (e), (f), and (g) below are three independent variations on the original code & settings.

e) If the cache were 2-way set associative, what would be the hit rate for Loop 27

(assume the standard LRU replacement policy)
f) If instead we removed the line labeled ACCESS #2, what would be the hit rate for Loop 27?

g) Instead, what’s the smallest we could shrink OFFSET to maximize our Loop 2 hit rate?

(assume we still need to maintain the same functionality)
5/6

justi
Cross-Out

justi
Text Box
line

M2) Cache Money, y’all (10 pts, 20 min)

This C code runs on a 32-bit MIPS machine with 4 GiB of memory and a single L1 cache. Vectors a,B live in
different places of memory, are of equal size (n is a power of 2 and a [natural number] multiple of the cache size),
block aligned. The size of the cache is C, a power of 2 (and always bigger than the block size, obviously).

// sizeof(uint8 t) = 1 // sizeof(uint8 t) = 1
SwapLeft (uint8_t *A, uint8_t *B, int n) { SwapRight (uint8_t *A, uint8_t *B, int n) {
uint8_t tmp; uint8_t tmpA, tmpB;
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
tmp = A[i];
A[i] = B[i];
B[i] = tmp;
}
}
}
}

Let’s first just consider the swapLeft code for parts (a) and (b).

a) If the cache is direct mapped and the best hit:miss ratio is “H:1”, what is the block size in bytes?

b) What is the worst hit:miss ratio?

c) Fillin the code for swapRight so that it does the same thing as swapLeft but improves the (b) hit:miss ratio.
You may not need all the blanks.

d) If the block size (in bytes) is a, what is the worst hit:miss ratio for swapRight?

e) We next change the cache to be 2-way set-associative, and let's go back to just considering swapLeft.
What is the worst hit:miss ratio for swapLeft with the following replacement policies? The cache size is C
(bytes), the block size is a (bytes), LRU = Least Recently Used, MRU = Most Recently Used.

LRU and an empty cache MRU and a full cache

3/9

d) Ash Ketchum has six slots in his party, each of which can hold a single Pokémon. Additionally, Ash
has access to a PC (personal computer) which holds the rest of the Pokémon he owns. Essentially,
his party acts as a “cache” for accesses to the PC (the “memory”).

i Each slot in Ash’s party can hold any Pokémon. What kind of cache is this analogous to?

(Circle one)
Set-associative Write-back Fully Associative Direct Mapped Write-through
ii. Ash’s party exploits locality but not locality.

Explain in one sentence:

Question 4: Caches (11 pts)

We have a 64 KiB address space and two different caches. Both are 1 KiB, direct-mapped caches with random

SID:

replacement and write-back policies. Cache X uses 64 B blocks and Cache Y uses 256 B blocks.

a) Calculate the TIO address breakdown for Cache X:

b) During some part of a running program, Cache Y’s management bits are as shown below. Four options for

Tag

Index

Offset

the next two memory accesses are given (R = read, W = write). Circle the option that results in data from
the cache being written to memory.

Line

Slet | Valid | Dirty Tag
00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11

(1) R 0x4C00, W 0x5C00

(3) W 0x2300, R 0xOF00

(2) W 0x5500, W 0x7A00

(4) R 0x3000, R 0x3000

c) The code snippet below loops through a character array. Give the value of LEAP that results in a Hit Rate

of 15/16 for Cache Y.

#define ARRAY_SIZE 8192
char string[ARRAY_SIZE];

for(i = 0O;

I < ARRAY_SIZE;

string[i1] |= 0x20;

}

// &string = 0x8000

i1 += LEAP) {
// to

lower

d) For the loop shown in part (c), let LEAP = 64. Circle ONE of the following changes that increases the hit

rate of Cache X:

Increase Block Size

Increase Cache Size

Add a L2$

Increase LEAP

e) For the following cache access parameters, calculate the AMAT. All-miss-and-hitrates-are-local-to-that
cachelevel: Please simplify and include units.

L1$ Hit Time

L1$ Miss Rate | L2$-HitTFime

L23 HitRate

MEM Hit Time

2ns

40%

20-ns

95%

400 ns

justi
Cross-Out

justi
Text Box
Line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

SID:

Question 8: Caches (10 pts)

We are using a 20-bit byte addressed machine. We have two options for caches: Cache A is fully associative
and Cache B is 4-way set associative. Both caches have a capacity of 16 KiB and 16 B blocks.

a) Calculate the TIO address breakdown for Cache A:

Offset
4

Tag Index

lines
b) Below is the initial state of one set (four slets) in Cache B. Each slot holds 2 LRU bits, with ObOO being the
most recently used and Ob11 being the least recently used. Circle ONE option below for two memory
accesses that result in the final LRU bits shown and only one block replacement/eviction.

Line Initial Final
Slot Tag LRU bits LRU bits
Index 0 0110 1010 00 10
1001 1110 1 0000 0001 10 — 00
2 0101 0101 01 11
3 1010 1100 11 01

(1) 0x019D0, 0XAD9DO (2) OXAC9EO, 0x129E0

(3) 0xAD9DO, 0x019D0 (4) 0x129E0, OXAC9EO

c) For the code given below, calculate the hit rate for Cache B assuming that it starts cold.
#define ARRAY_SIZE 8192
int int_arr[ARRAY_SIZE];

for (int 1 = 0; i < ARRAY_SIZE / 2; i++) {

int_arr[i] *= int_arr[i + ARRAY_SIZE / 2];

// &int_arr = 0x80000

d) For each of the proposed changes below, write U for “increase”, N for “no change”, or D for “decrease” to
indicate the effect on the hit rate of Cache B for the loop shown in part (c):

Direct-mapped Increase cache size

Double ARRAY_SIZE Random block replacement

e) Calculate the AMAT for a-multi-evel-cache-given the following values. Don’t forget units!
HT = Hit Time, MR = Miss Rate, GMR—=Global-Miss-Rate
L1$ HT L1$ MR L2 HT GMR MEM HT
4 ns 20% 25-ns 5% 500 ns

10

justi
Cross-Out

justi
Text Box
lines

justi
Text Box
/eviction.

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
Line

	Pages from midterm_su12.pdf
	Pages from 2013Sp CS61C Midterm.pdf
	Pages from 2013SpCS61CFinalExam.pdf
	Pages from cs61c_su13_midterm.pdf
	Pages from cs61c_su13_midterm.pdf
	Pages from CS61C-Su16-MT2.pdf
	Pages from CS61C-Su16-Final.pdf

