
CSE 351 Section 7 – Caches 
Hi there! Welcome back to section, we’re happy that you’re here ☺ 

IEC Prefixing System 

We often need to express large numbers and the preferred tool for doing so is the IEC Prefixing System! 

Kibi- (Ki) 210 ≈ 103 Pebi- (Pi) 250 ≈ 1015 
Mebi- (Mi) 220 ≈ 106 Exbi- (Ei) 260 ≈ 1018 
Gibi- (Gi) 230 ≈ 109 Zebi- (Zi) 270 ≈ 1021 
Tebi- (Ti) 240 ≈ 1012 Yobi- (Yi) 280 ≈ 1024 

Prefix Exercises: 

Write the following as powers of 2.  The first one has been done for you: 

2 Ki-bytes = 211 bytes 64 Gi-bits = 236 bits 16 Mi-integers = 224 integers 

256 Pi-pencils = 258 pencils 512 Ki-books = 219 books 128 Ei-students = 267 students 

Write the following using IEC Prefixes.  The first one has been done for you: 

215 cats = 32 Ki-cats 234 birds = 16 Gi-birds 243 huskies = 8 Ti-huskies 

261 things = 2 Ei-things 227 caches = 128 Mi-caches 258 addresses = 256 Pi-addresses 

 

Accessing a Cache (Hit or Miss?) 

Assume the following caches all have block size 𝐾 = 4 and are in the current state shown (you can ignore "—").   
All values are shown in hex.  Tag fields are NOT padded, while bytes of the cache blocks are shown in full. The word 
size for the machine with these caches is 12 bits (i.e. addresses are 12 bits long) 

Direct-Mapped: 

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3   
0 1 15 63 B4 C1 A4 8 0 — — — — —  Offset bits: 2 

1 0 — — — — — 9 1 0 01 12 23 34   

2 0 — — — — — A 1 1 98 89 CB BC   

3 1 D DE AF BA DE B 0 1E 4B 33 10 54  Index bits: 4 

4 0 — — — — — C 0 — — — — —   

5 0 — — — — — D 1 11 C0 04 39 AA   

6 1 13 31 14 15 93 E 0 — — — — —  Tag bits: 6 

7 0 — — — — — F 1 F FF 6F 30 0   

 

 Hit or Miss? Data returned 

a) Read 1 byte at 0x7AC Miss — 

b) Read 1 byte at 0x024 Hit 0x01 

c) Read 1 byte at 0x99F Miss — 



 

2-way Set Associative: 

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3   
0 0 — — — — — 0 0 — — — — —  Offset bits: 2 

1 0 — — — — — 1 1 2F 01 20 40 03   

2 1 3 4F D4 A1 3B 2 1 0E 99 09 87 56   

3 0 — — — — — 3 0 — — — — —  Index bits: 3 

4 0 6 CA FE F0 0D 4 0 — — — — —   

5 1 21 DE AD BE EF 5 0 — — — — —   

6 0 — — — — — 6 1 37 22 B6 DB AA  Tag bits: 7 

7 1 11 00 12 51 55 7 0 — — — — —   

 
 Hit or Miss? Data returned 

a) Read 1 byte at 0x435 Hit 0xAD 

b) Read 1 byte at 0x388 Miss — 

c) Read 1 byte at 0x0D3 Miss — 

 

Fully Associative: 

Set Valid Tag B0 B1 B2 B3 Set Valid Tag B0 B1 B2 B3   
0 1 1F4 00 01 02 03 0 0 — — — — —  Offset bits: 2 

0 0 — — — — — 0 1 AB 02 30 44 67   

0 1 100 F4 4D EE 11 0 1 34 FD EC BA 23   

0 1 77 12 23 34 45 0 0 — — — — —  Index bits: 0 

0 0 — — — — — 0 1 1C6 00 11 22 33   

0 1 101 DA 14 EE 22 0 1 45 67 78 89 9A   

0 0 — — — — — 0 1 1 70 00 44 A6  Tag bits: 10 

0 1 16 90 32 AC 24 0 0 — — — — —   

 
 Hit or Miss? Data returned 

a) Read 1 byte at 0x1DD Hit 0x23 

b) Read 1 byte at 0x719 Hit 0x11 

c) Read 1 byte at 0x2AA Miss — 

 
Code Analysis 

Consider the following code that accesses a two-dimensional array (of size 64×64 ints).   
Assume we are using a direct-mapped, 1 KiB cache with 16 B block size. 

 for (int i = 0; i < 64; i++) 

     for (int j = 0; j < 64; j++) 

         array[i][j] = 0;         // assume &array = 0x600000 

a) What is the miss rate of the execution of the entire loop? 
Every block can hold 4 ints (16B/4B per int), so we will need to pull a new block from memory every 4 

accesses of the array. This means this miss rate is  
4 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑖𝑛𝑡

16 𝑏𝑦𝑡𝑒𝑠 𝑝𝑒𝑟 𝑏𝑙𝑜𝑐𝑘
=  

1 𝑏𝑙𝑜𝑐𝑘

4 𝑖𝑛𝑡𝑠
 = 0.25 = 25% 

b) What code modifications can change the miss rate?  Brainstorm before trying to analyze. 
Possible answers: switch the loops (i.e. make j the outer loop and i the inner loop), switch j and i in the 
array access, make the array a different type (e.g. char[ ][ ], long[ ][ ], etc.), make array an array of Linked 
Lists or a 2-level array, etc. 

(NOTE: Answer to part (c) on next page) 



 
c) What cache parameter changes (size, associativity, block size) can change the miss rate? 

Let’s consider each of the three parameters individually. 
 
First, let’s consider modifying the size of the cache. Will it change the miss rate? 
No, it doesn't matter how big the cache is in this case (if the block size doesn't change). We will still be 
pulling the same amount of data each miss, and we will still have to go to memory every time we exhaust 
that data 
 
Next, let’s consider modifying the associativity of the cache. Will it change the miss rate? 
No, this is helpful if we want to reduce conflict misses, but since the data we're accessing is all in contiguous 
memory (thanks arrays!), booting old data to replace it with new data isn't an issue. 
 
Finally, let’s consider modifying the block size of the cache. Will it change the miss rate? 
Yes, bigger blocks mean we pull bigger chunks of contiguous elements in the array every time we have a 
miss. Bigger chunks at a time means fewer misses down the line. Likewise, smaller blocks increase the 
frequency with which we need to go to memory (think back to the calculations we did in part (a) to see 
why this is the case) 
 
So, in conclusion, changing block size can change the miss rate. Changing size or associativity will NOT 
change the miss rate. 
 
NOTE: Remember that the results we got were for this specific example. There are some code examples in 
which changing the size or associativity of the cache will change the miss rate. 
 

  



Cache Simulator Demo 

Let’s get some practice with the cache simulator!  First, go to:  

https://courses.cs.washington.edu/courses/cse351/cachesim/ 

At the top you’ll see 4 boxed regions: 

• System Parameters † This lets you play around with the structure/format of the cache 
• Manual Memory Access † This is where you actually make reads and writes to memory 
• History An interactive log of executed accesses. You can type/paste accesses here, too! 
• Simulation Messages  Describes the most recent actions made by the simulator. 

† These include “Explain” toggles that walk you through execution step-by-step. 

 

a) Set the following System Parameters (but don’t generate the system yet): 

Address Width → 6, Cache Size → 16, Block Size → 4, Associativity → 2, leave the rest at default values. 

Based on just the system parameter numbers above shown, predict the following: 

 i) Highest memory address:  0b 0011 1111  ii) Number of sets in cache:  2 

[Click “Generate System” to verify your responses ] 

b) We are about to READ the byte at the address 0x2A.  Predict the following: 

 i) This block will be placed in set #:  0  ii) The stored tag bits will be:  0b 101 

             iii) The 4 bytes of data in this block are (in order):    0xe9,   0x36,   0xae,   0x32 

[Enter “2a” into the Read Addr and click “Read” to verify your responses] 

c) We are about to WRITE the byte 0xB1 to the address 0x1B.  Predict the following: 

 i) This block will be placed in set #:  0  ii) The stored tag bits will be:  0b 011 

[Enter “1b” into the Write Addr and “b1” into the Write Byte and then click “Write” to verify your responses ] 

             iii) Notice that the value of the byte at address 0x1B is different in the cache and memory.  

What indicates this disparity in the cache?  The dirty bit 

What would have happened if our write miss policy were “No Write-Allocate” instead? 
 We would write directly to memory and not cache the block starting at 0x18 

d) We are about to READ the byte at address 0x01.  Predict the following: 

 i) This block will be placed in set #:  0  ii) The stored tag bits will be:  0b 000 

             iii) Will this access cause a conflict/replacement? (circle one) Yes No 

             iv) If yes, which block will be evicted? (circle one) Read from (b) Write from (c) 

[Enter “01” into the Read Addr and click “Read” to verify your responses ] 

e) We are about to WRITE the byte 0xE9 to the address 0x1C.  Predict the following: 

 i) This block will be placed in set #:  1  ii) The stored tag bits will be:  0b 011 

             iii) Will this access cause a conflict/replacement? (circle one)  Yes  No 

             iv) If yes, which block will be evicted?                 Read from (b) Write from (c) Read from (d) 

[Enter “1c” into the Write Addr and “e9” into the Write Byte and then click “Write” to verify your responses ] 



f) At this point, your History should show: Append the bolded text below so that your History looks like: 

  R(0x2a) = M 

  W(0x1b, 0xb1) = M 

  R(0x01) = M 

  W(0x1c, 0xe9) = M 

> 

   R(0x2a) = M 

  W(0x1b, 0xb1) = M 

  R(0x01) = M 

  W(0x1c, 0xe9) = M 

> W(0x03, 0xff) 

  R(0x27) 

  R(0x10) 

  W(0x1d, 0x00) 

[Click “Load.”  You’ll notice that “  = ?” is appended to each of these new memory accesses ] 

Predict if ‘?’ will resolve to Hit (H) or Miss (M) for each of the new accesses: 

 i) W(0x03, 0xff) = H ii) R(0x27) = M 

 iii) R(0x10) = M iv) W(0x1d, 0x00) = H 

[Click the down arrow (↓) to verify your responses for each access ] 

g) The cache, after the 8 executions detailed above, should look like this: 

 

The small numbers on the right (outside of the sets) indicate how recently used each line is within the set, with 
smaller numbers being more recently used).  

 i) An LRU replacement policy will evict which block on the next conflict in set 0? Line 1 Line 2 

              ii) What is one benefit of using LRU over Random? 

 Favors temporal locality, as local variables usually are reused frequently. 

 

             iii) What is one benefit of using Random over LRU? 

 Cheaper and faster to use as there is no need to maintain record of the most 

recently used block. 

h) If we were to flush the cache right now (don’t actually) how many bytes in memory would change? 3 

How many bytes would change if we were using Write Through instead of Write Back? 0 

Can you explain why these numbers are the same/different? (if not, try changing the write hit policy and re-
running using the history above).  

Write Back won’t write the new value to memory directly but will instead cache it 

and mark its block as dirty. When any dirty block is removed from the cache the 

memory corresponding to that block will be updated. 

Write Through will write any new value to memory directly, thus meaning that no 

block in the cache will be dirty and no values in memory need to be updated when 

flushing the cache.  


