
Bitwise Operators

Number Representation Recap

Humans think about numbers in decimal

Computers think about numbers in binary

Base conversion to go between

• Hex is more human-readable than binary

All information on a computer is in binary

• Nice because big difference between “high” and “low”

Binary encoding can represent anything!

• Program needs to know how to interpret bits

Operators Recap

• NOT: ~

• This will flip all bits in the operand
• AND: &

• This will perform a bitwise AND on every pair of bits
• OR: |

• This will perform a bitwise OR on every pair of bits
• XOR: ^

• This will perform a bitwise XOR on every pair of bits
• SHIFT: <<, >>

• This will shift the bits right or left
• logical vs. arithmetic

Operators Recap

• NOT: !

• Evaluates the entire operand, rather than each bit
• Produces a 1 if == 0, produces 0 if nonzero

• AND: &&

• Produces 1 if both operands are nonzero
• OR: ||

• Produces 1 if either operand is nonzero

Lab 1

• Worksheet in class

• Tips:
• Work on 8-bit versions first, then scale your solution to work with 32-bit

inputs
• Save intermediate results in variables for clarity
• Shifting by more than 31 bits is UNDEFINED. This will NOT yield 0

Examples

Create 0xFFFFFFFF using only one operator

• Limited to constants from 0x00 to 0xFF

• Naïve approach:

0xFF + (0xFF << 8) + (0xFF << 16) …
• Better approach:

~0x00 = 0xFFFFFFFF

Examples

Replace the leftmost byte of a 32-bit integer with 0xAB

• Let our integer be x

• First, we want to create a mask for the lower 24 bits
• ~(0xFF << 24) will do that using just two operators

• (x & mask) will zero out the leftmost 8 bits

• Now, we want to OR in 0xAB to those zeroed-out bits

• Final result:
• (x & mask) | (0xAB << 24)

• Total operators: 5

