
CSE	351	Section	1	–	Number	Bases	and	Working	in	C	
Hi	there	and	welcome	to	section!			

Numerals	

A	numeral	is	a	symbolic	representation	of	a	number.		For	the	purposes	of	this	class,	we	
will	define	a	numeral	as	a	sequence	of	digits	ሺsymbolsሻ.	

Number	Bases	
If	we	have	an	݊‐digit	numeral	݀௡ିଵ݀௡ିଶ …݀଴	in	base	ܾ,	then	the	value	of	that	numeral	is	

∑ ࢏ࢊ
૚ି࢔
ୀ૙࢏ 	we	place	100’s	or	10’s	a	of	instead	that	say	to	notation	fancy	just	is	which	,࢏࢈

have	a	ܾ’s	or	ܾଶ’s	place.	

The	most	common	bases	we	will	use	in	this	class	are	2,	10,	and	16,	which	are	called	
binary,	decimal,	and	hexadecimal	ሺor	hexሻ,	respectively.		In	base	ܾ,	each	digit	݀௜	can	only	
be	one	of	ܾ	fixed	symbols	ሺ0‐1	for	binary,	0‐9	for	decimal,	etc.ሻ.	

The	table	on	the	right	shows	the	equivalent	numerals	for	the	numbers	0	through	15	in	
these	three	major	number	bases.		We	differentiate	between	these	bases	by	using	the	
prefix	‘0b’	for	binary	and	‘0x’	for	hexadecimal.	

Exercises:	
1. Complete	the	table	below	by	converting	the	numbers	into	the	other	two	common	bases.		You	may	leave	the	

“Decimal”	column	unsimplified.	
	

Binary	 Decimal	 Hexadecimal	

0b10010011	 	 	

	 	 0x16	

	 63	 	

0b100100	 	 	

	 	 0xC30	

	 0	 	

	 	 0xBAD	

	 437	 	

	
	
	
	 	

Binary	 Decimal	 Hex	
0000	 0	 0	
0001	 1	 1	
0010	 2	 2	
0011	 3	 3	
0100	 4	 4	
0101	 5	 5	
0110	 6	 6	
0111	 7	 7	
1000	 8	 8	
1001	 9	 9	
1010	 10	 A	
1011	 11	 B	
1100	 12	 C	
1101	 13	 D	
1110	 14	 E	
1111	 15	 F	

Setting	Up	Your	System	

You	have	four	options	for	your	working	environment:	

1ሻ CSE	Labs:		Log	in	locally	to	one	of	the	Linux	machines	in	CSE	002,	003,	or	006	ሺmust	have	a	CSE	accountሻ	
2ሻ Remote	access:		Log	in	remotely	to	attu.cs.washington.edu	ሺCSE	accountሻ	

3ሻ Install	the	CSE	VM:		https://www.cs.washington.edu/lab/software/linuxhomevm		
4ሻ Personal	computer:		Must	be	running	a	Linux	distribution	ሺe.g.	Ubuntu,	Fedora,	CentOSሻ	

You	will	need	the	following	tools	for	the	rest	of	the	course,	so	make	sure	you	know	how	to	access/use	them	
ሺalready	installed	on	attu	and	the	VMሻ	and	start	to	get	familiar	with	them:	

 Text	Editor		ሺpersonal	preferenceሻ	
o Try	many,	pick	one!		Some	tutorials	can	be	found	on	the	course	website.	
o Command‐line:		nano,	vim,	emacs	
o Graphical:		gedit,	emacs	

 GNU	Compiler	Collection	ሺgccሻ	
o Example:		gcc -Wall -g -std=c99 -o execName sourceCode.c

 -W	sets	warnings	
 -g	turns	on	debugging	symbols	
 -std	sets	what	version	of	C	we	are	using	
 -o	sets	the	name	of	the	resulting	executable	

 GNU	Project	Debugger	ሺgdbሻ	
o Command‐line	debugger	that	we	will	use	heavily	later	in	the	course	

Code	Examples:	

1ሻ Download	HelloWorld.c	from	the	class	webpage:	
 $ wget https://courses.cs.washington.edu/courses/cse351/17au/sections/01/code/HelloWorld.c

2ሻ Open	the	file	in	your	favorite	text	editor	and	read	the	comments	

3ሻ Compile	the	file	to	the	executable	hello: $ gcc -o hello HelloWorld.c

4ሻ Run	the	program:	 	 	 	 	 	 $./hello

5ሻ Download	calculator.c	from	the	class	webpage:	
 $ wget https://courses.cs.washington.edu/courses/cse351/17au/sections/01/code/calculator.c

6ሻ Read	through	the	code	in	a	text	editor,	then	compile	and	run	the	program	

7ሻ Example	usage:	 	 	 	 	 	 $./calculator 4 5 +	
	
	
	
	
printf	

Used	to	print	to	the	console.		Unfortunately,	you	can’t	concatenate	String	variables	like	you	can	in	Java.	

You	provide	a	format	string	as	the	first	argument,	which	includes	placeholders	to	print	out	variables:	

 %d	for	signed	int,	%u	for	unsigned	int,	%f	for	float,	%s	for	“string”,	%x	for	hexadecimal,	%p	for	pointer	

 Examples:	
o printf("I am %d years old", 20)	prints	“I	am	20	years	old”	
o printf("My name is %s", "Alfian")	prints	“My	name	is	Alfian”	
o printf("%d in hex is %x", 2827, 2827)	prints	“2827	in	hex	is	0xb0b”	

