
CSE351, Winter 2019L27: Java and C

Memory Bugs, Java and C
CSE 351 Winter 2019

https://xkcd.com/801/

Instructors:
Max Willsey

Luis Ceze

Teaching Assistants:
Britt Henderson

Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky

Luis Vega

Kory Watson

Ivy Yu

https://xkcd.com/801/

CSE351, Winter 2019L27: Java and C

Administrivia
v Course evaluations now open

§ You should have received a link!
§ Participation is really important J

v Final Exam: Tue, 3/19, 8:30-10:20 pm in KNE 130
§ Structure:

2

CSE351, Winter 2019L27: Java and C

Memory-Related Perils and Pitfalls in C

3

Program stop
possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Dangling pointer

H) Wrong allocation size

CSE351, Winter 2019L27: Java and C

Find That Bug!

4

char s[8];
int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!

5

int* foo() {
int val;

return &val;
}

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!

• N and M defined elsewhere (#define)

6

int **p;

p = (int **)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!

• A is NxN matrix, x is N-sized vector (so product is vector of size N)
• N defined elsewhere (#define)

7

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = (int *)malloc(N*sizeof(int));
int i, j;

for (i = 0; i < N; i++)
for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;
}

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!
v The classic scanf bug

§ int scanf(const char *format)

8

int val;
...
scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!

9

x = (int*)malloc(N * sizeof(int));
// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));
// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!

10

x = (int*)malloc(N * sizeof(int));
// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Find That Bug!

11

typedef struct L {
int val;
struct L *next;

} list;

void foo() {
list *head = (list *) malloc(sizeof(list));
head->val = 0;
head->next = NULL;

// create and manipulate the rest of the list
...

free(head);
return;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2019L27: Java and C

Dealing With Memory Bugs
v Conventional debugger (gdb)

§ Good for finding bad pointer dereferences
§ Hard to detect the other memory bugs

v Debugging malloc (UToronto CSRI malloc)
§ Wrapper around conventional malloc
§ Detects memory bugs at malloc and free boundaries

• Memory overwrites that corrupt heap structures
• Some instances of freeing blocks multiple times
• Memory leaks

§ Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks
• Freeing block twice that has been reallocated in the interim
• Referencing freed blocks

12

CSE351, Winter 2019L27: Java and C

Dealing With Memory Bugs (cont.)
v Some malloc implementations contain checking

code
§ Linux glibc malloc: setenv MALLOC_CHECK_ 2
§ FreeBSD: setenv MALLOC_OPTIONS AJR

v Binary translator: valgrind (Linux), Purify
§ Powerful debugging and analysis technique
§ Rewrites text section of executable object file
§ Can detect all errors as debugging malloc
§ Can also check each individual reference at runtime

• Bad pointers
• Overwriting
• Referencing outside of allocated block

13

CSE351, Winter 2019L27: Java and C

What about Java or ML or Python or …?
v In memory-safe languages, most of these bugs are

impossible
§ Cannot perform arbitrary pointer manipulation
§ Cannot get around the type system
§ Array bounds checking, null pointer checking
§ Automatic memory management

v But one of the bugs we saw earlier is possible. Which
one?

14

CSE351, Winter 2019L27: Java and C

Memory Leaks with GC
v Not because of forgotten free — we have GC!
v Unneeded “leftover” roots keep objects reachable
v Sometimes nullifying a variable is not needed for correctness

but is for performance
v Example: Don’t leave big data structures you’re done with in a

static field

15

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Winter 2019L27: Java and C

Roadmap

16

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2019L27: Java and C

Java vs. C
v Reconnecting to Java (hello CSE143!)

§ But now you know a lot more about what really happens
when we execute programs

v We’ve learned about the following items in C; now
we’ll see what they look like for Java:
§ Representation of data

§ Pointers / references

§ Casting

§ Function / method calls including dynamic dispatch

17

CSE351, Winter 2019L27: Java and C

Worlds Colliding
v CSE351 has given you a “really different feeling”

about what computers do and how programs execute

v We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”
§ It’s not – it’s just a higher-level of abstraction
§ Connect these levels via how-one-could-implement-Java in

351 terms

18

CSE351, Winter 2019L27: Java and C

Meta-point to this lecture
v None of the data representations we are going to talk

about are guaranteed by Java

v In fact, the language simply provides an abstraction
(Java language specification)
§ Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

§ But it is important to understand an implementation of the
lower levels – useful in thinking about your program

19

CSE351, Winter 2019L27: Java and C

Data in Java
v Integers, floats, doubles, pointers – same as C

§ “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

§ Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

§ No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

v null is typically represented as 0 but “you can’t tell”
v Much more interesting:

§ Arrays
§ Characters and strings
§ Objects

20

CSE351, Winter 2019L27: Java and C

Data in Java: Arrays
v Every element initialized to 0 or null
v Length specified in immutable field at start of array (int – 4

bytes)
§ array.length returns value of this field

v Since it has this info, what can it do?

21

int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

5 00 00 00 00 00
0 4 20 24

int[] array = new int[5];

CSE351, Winter 2019L27: Java and C

Data in Java: Arrays
v Every element initialized to 0 or null
v Length specified in immutable field at start of array (int – 4

bytes)
§ array.length returns value of this field

v Every access triggers a bounds-check
§ Code is added to ensure the index is within bounds
§ Exception if out-of-bounds

22

int array[5];

Java:

C:

0 4 20
?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant5 00 00 00 00 00
0 4 20 24

int[] array = new int[5];

CSE351, Winter 2019L27: Java and C

Data in Java: Characters & Strings
v Two-byte Unicode instead of ASCII

§ Represents most of the world’s alphabets

v String not bounded by a ‘\0’ (null character)
§ Bounded by hidden length field at beginning of string

v All String objects read-only (vs. StringBuffer)

23

Example: the string “CSE351”

43 \0
0 1 4

53 45 33 35 31
7

C:
(ASCII)

Java:
(Unicode) 16

6 43 00 53 00 45 00 33 00 35 00 31 00
0 4 8

CSE351, Winter 2019L27: Java and C

Data in Java: Objects
v Data structures (objects) are always stored by reference, never

stored “inline”
§ Include complex data types (arrays, other objects, etc.) using references

24

C:

§ a[] stored “inline” as part of
struct

struct rec {
int i;
int a[3];
struct rec *p;

};

Java:

§ a stored by reference in object

class Rec {
int i;
int[] a = new int[3];
Rec p;
...

}

i a p
0 4 16 24

i a p
0 4 2012

4 16
3

0

CSE351, Winter 2019L27: Java and C

Pointer/reference fields and variables
v In C, we have “->” and “.” for field selection depending on

whether we have a pointer to a struct or a struct
§ (*r).a is so common it becomes r->a

v In Java, all non-primitive variables are references to objects
§ We always use r.a notation
§ But really follow reference to r with offset to a, just like r->a in C
§ So no Java field needs more than 8 bytes

25

struct rec *r = malloc(...);
struct rec r2;
r->i = val;
r->a[2] = val;
r->p = &r2;

r = new Rec();
r2 = new Rec();
r.i = val;
r.a[2] = val;
r.p = r2;

C: Java:

CSE351, Winter 2019L27: Java and C

Pointers/References
v Pointers in C can point to any memory address
v References in Java can only point to [the starts of] objects

§ Can only be dereferenced to access a field or element of that object

26

struct rec {
int i;
int a[3];
struct rec *p;

};
struct rec* r = malloc(…);
some_fn(&(r->a[1])); // ptr

class Rec {
int i;
int[] a = new int[3];
Rec p;

}
Rec r = new Rec();
some_fn(r.a, 1); // ref, index

r r

Xi a p
0 4 16 24

i a p
0 4 2012

int[3]
4 16

3
0

Java:C:

CSE351, Winter 2019L27: Java and C

Casting in C (example from Lab 5)
v Can cast any pointer into any other pointer

§ Changes dereference and arithemetic behavior

27

struct BlockInfo {
size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev;

};
typedef struct BlockInfo BlockInfo;
...
int x;
BlockInfo *b;
BlockInfo *newBlock;
...
newBlock = (BlockInfo *) ((char *) b + x);
...

Cast back into
BlockInfo * to use
as BlockInfo struct

Cast b into char * to
do unscaled addition

s n p
80 16 24

s n p
x

CSE351, Winter 2019L27: Java and C

Type-safe casting in Java
v Can only cast compatible object references

§ Based on class hierarchy

28

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

CSE351, Winter 2019L27: Java and C

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat b1 = new Boat(); // |--> sibling
Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();
Vehicle v2 = v1;
Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;
Car c5 = (Car) b1;

Type-safe casting in Java
v Can only cast compatible object references

§ Based on class hierarchy

29

class Vehicle {
int passengers;

}

class Boat extends Vehicle {
int propellers;

}

class Car extends Vehicle {
int wheels;

}

class Object {
...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)
✗ Compiler error: Wrong direction – elements Car

not in Vehicle (wheels)
✗ Runtime error: Vehicle does not contain all

elements in Boat (propellers)
✓ v2 refers to a Car at runtime
✗ Compiler error: Unconvertable types – b1 is

declared as type Boat

CSE351, Winter 2019L27: Java and C

Java Object Definitions

30

class Point {
double x;
double y;

Point() {
x = 0;
y = 0;

}

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y);

}
}
...
Point p = new Point();
...

constructor

fields

method(s)

creation

CSE351, Winter 2019L27: Java and C

Java Objects and Method Dispatch

v Virtual method table (vtable)
§ Like a jump table for instance (“virtual”) methods plus other class info
§ One table per class

v Object header : GC info, hashing info, lock info, etc.
§ Why no size?

31

code for Point() code for samePlace()

vtable for class Point:

q
xvtable ptr yheader

Point object

p
xvtable ptr yheader

Point object

CSE351, Winter 2019L27: Java and C

Java Constructors
v When we call new: allocate space for object (data fields and

references), initialize to zero/null, and run constructor method

32

Point p = new Point(); Point* p = calloc(1,sizeof(Point));
p->header = ...;
p->vtable = &Point_vtable;
p->vtable[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvtable ptr yheader

Point object

C pseudo-translation:

CSE351, Winter 2019L27: Java and C

Java Methods
v Static methods are just like functions
v Instance methods:

§ Can refer to this;
§ Have an implicit first parameter for this; and
§ Can be overridden in subclasses

v The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

33

p.samePlace(q); p->vtable[1](p, q);
Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p
xvtable ptr yheader

Point object

CSE351, Winter 2019L27: Java and C

Subclassing

v Where does “z” go? At end of fields of Point
§ Point fields are always in the same place, so Point code can run on
3DPoint objects without modification

v Where does pointer to code for two new methods go?
§ No constructor, so use default Point constructor
§ To override “samePlace”, use same vtable position
§ Add new pointer at end of vtable for new method “sayHi”

34

class 3DPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

CSE351, Winter 2019L27: Java and C

Subclassing

35

New code for
samePlace

Old code for
constructor

sayHi tacked on at end Code for
sayHi

class 3DPoint extends Point {
double z;
boolean samePlace(Point p2) {

return false;
}
void sayHi() {

System.out.println("hello");
}

}

xvtable yheader

3DPoint object
z

constructor samePlacevtable for 3DPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Winter 2019L27: Java and C

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

Dynamic Dispatch

36

Point p = ???;
return p.samePlace(q);

// works regardless of what p is
return p->vtable[1](p, q);

Java: C pseudo-translation:

code for 3DPoint’s samePlace()

code for sayHi()

xvtable yheader

3DPoint object
z

3DPoint vtable:

CSE351, Winter 2019L27: Java and C

Ta-da!
v In CSE143, it may have seemed “magic” that an

inherited method could call an overridden method
§ You were tested on this endlessly

v The “trick” in the implementation is this part:
p->vtable[i](p,q)

§ In the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

§ Dispatch determined by p, not the class that defined a
method

37

CSE351, Winter 2019L27: Java and C

Practice Question
v Assume: 64-bit pointers and that a Java object header is 8 B
v What are the sizes of the things being pointed at by ptr_c

and ptr_j?

38

struct c {
int i;
char s[3];
int a[3];
struct c *p;

};
struct c* ptr_c;

class jobj {
int i;
String s = "hi";
int[] a = new int[3];
jobj p;

}
jobj ptr_j = new jobj();

CSE351, Winter 2019L27: Java and C

Practice Question
v Assume: 64-bit pointers and that a Java object header is 8 B
v What are the sizes of the things being pointed at by ptr_c

and ptr_j?

39

struct c {
int i;
char s[3];
int a[3];
struct c *p;

};
struct c* ptr_c;

class jobj {
int i;
String s = "hi";
int[] a = new int[3];
jobj p;

}
jobj ptr_j = new jobj();

CSE351, Winter 2019L27: Java and C

We made it! !"

40

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

