
CSE351, Autumn 2018L24: Memory Allocation I

Memory Allocation I
CSE 351 Autumn 2019

https://xkcd.com/371/

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants:
Britt Henderson
Lukas Joswiak
Josie Lee
Wei Lin

Daniel Snitkovsky
Luis Vega
Kory Watson
Ivy Yu

https://xkcd.com/627/

CSE351, Autumn 2018L24: Memory Allocation I

Administrivia

v One extra late day
v HW5 out now, Lab 5 today

v Final Exam: Tue, March 19, 8:30-10:20am in KNE 130
§ Review in next week’s section
§ Stay tuned

2

CSE351, Autumn 2018L24: Memory Allocation I

Page Tables vs. Reality
v VM looks cool, but there’s just one issue… the

numbers don’t work out for the story so far!

v The problem is the page table for each process:

§ Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory

§ How many page table entries is that?

§ Moral: Cannot use this naïve implementation of the

virtual→physical page mapping – it’s way too big

3

This is extra
(non-testable)

material

CSE351, Autumn 2018L24: Memory Allocation I

Multi-level Page Tables

4

This is extra
(non-testable)

material

106 109 1012 1015 1018103

CSE351, Autumn 2018L24: Memory Allocation I

A Solution: Multi-level Page Tables

5

Page table
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This is called a page walk

This is extra
(non-testable)

material

CSE351, Autumn 2018L24: Memory Allocation I

Multi-level Page Tables
v A tree of depth ! where each node at depth " has up to 2$

children if part " of the VPN has % bits
v Hardware for multi-level page tables inherently more

complicated
§ But it’s a necessary complexity – 1-level does not fit

v Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory
§ Parts created can be evicted from cache/memory when not being used
§ Each node can have a size of ~1-100KB

v TLB hit gives you entire mapping! (only 1 memory access)
v But a TLB miss requires ! + 1 cache/memory accesses

§ Fine so long as TLB misses are rare – motivates larger TLBs

6

This is extra
(non-testable)

material

CSE351, Autumn 2018L24: Memory Allocation I

Roadmap

7

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Autumn 2018L24: Memory Allocation I

Multiple Ways to Store Program Data
v Static global data

§ Fixed size at compile-time
§ Entire lifetime of the program

(loaded from executable)
§ Portion is read-only

(e.g. string literals)
v Stack-allocated data

§ Local/temporary variables
• Can be dynamically sized (in some versions of C)

§ Known lifetime (deallocated on return)

v Dynamic (heap) data
§ Size known only at runtime (i.e. based on user-input)
§ Lifetime known only at runtime (long-lived data structures)

8

int array[1024];

void foo(int n) {
int tmp;
int local_array[n];

int* dyn =
(int*)malloc(n*sizeof(int));

}

CSE351, Autumn 2018L24: Memory Allocation I

Memory Allocation
v Dynamic memory allocation

§ Introduction and goals
§ Allocation and deallocation (free)
§ Fragmentation

v Explicit allocation implementation
§ Implicit free lists
§ Explicit free lists (Lab 5)
§ Segregated free lists

v Implicit deallocation: garbage collection
v Common memory-related bugs in C

9

CSE351, Autumn 2018L24: Memory Allocation I

Dynamic Memory Allocation
v Programmers use dynamic memory allocators to

acquire virtual memory at run time
§ For data structures whose size

(or lifetime) is known only at runtime
§ Manage the heap of a process’

virtual memory:

v Types of allocators
§ Explicit allocator: programmer allocates and frees space

• Example: malloc and free in C

§ Implicit allocator: programmer only allocates space (no free)
• Example: garbage collection in Java, Javascript, Python, Lisp

10

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Autumn 2018L24: Memory Allocation I

Dynamic Memory Allocation
v Allocator organizes heap as a collection of variable-

sized blocks, which are either allocated or free
§ Allocator requests pages in the heap region; virtual memory

hardware and OS kernel allocate these pages to the process
§ Application objects are typically smaller than pages, so the

allocator manages blocks within pages
• (Larger objects handled too;

ignored here)

11

Top of heap
(brk ptr)

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Autumn 2018L24: Memory Allocation I

Allocating Memory in C
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory
§ Returns a pointer to the beginning of the allocated block; NULL indicates

failed request
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Good practices:
§ ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable
• void* is implicitly cast into any pointer type; explicit typecast will help you

catch coding errors when pointer types don’t match

12

CSE351, Autumn 2018L24: Memory Allocation I

Allocating Memory in C
v Need to #include <stdlib.h>
v void* malloc(size_t size)

§ Allocates a continuous block of size bytes of uninitialized memory

§ Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

§ Different blocks not necessarily adjacent

v Related functions:
§ void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block

§ void* realloc(void* ptr, size_t size)
• Changes the size of a previously allocated block (if possible)

§ void* sbrk(intptr_t increment)
• Used internally by allocators to grow or shrink the heap

13

CSE351, Autumn 2018L24: Memory Allocation I

Freeing Memory in C
v Need to #include <stdlib.h>
v void free(void* p)
v Releases whole block pointed to by p to the pool of available

memory
v Pointer p must be the original address

§ returned by m/c/realloc (i.e. beginning of the block)
§ otherwise system exception raised (maybe)

v Don’t call free on a block that has already been released or
on NULL
§ Anything could happen!
§ “double-free” errors

14

CSE351, Autumn 2018L24: Memory Allocation I

Memory Allocation Example in C

15

void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
if (p == NULL) { /* check for allocation error */

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) /* initialize int array */

p[i] = i;
/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));
if (p == NULL) { /* check for allocation error */

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++) /* initialize new spaces */

p[i] = i;
for (i=0; i<n+m; i++) /* print new array */

printf("%d\n", p[i]);
free(p); /* free p */

}

CSE351, Autumn 2018L24: Memory Allocation I

Notation
v We will draw memory divided into boxes

§ Each box can hold an 64 bits/8 bytes

§ Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes)

§ Book and old videos use 4-byte word instead of 8-byte box
• Holdover from 32-bit version of textbook !

16

Allocated block
(4 boxes)

Free block
(3 boxes) Free box

Allocated box

= 1 box = 8 bytes

CSE351, Autumn 2018L24: Memory Allocation I

Allocation Example

17

p1 = malloc(8*4)

p2 = malloc(8*5)

p3 = malloc(8*6)

free(p2)

p4 = malloc(8*2)

= 8-byte box

CSE351, Autumn 2018L24: Memory Allocation I

Implementation Interface
v Applications

§ Can issue arbitrary sequence of malloc and free requests
§ Must never access memory not currently allocated
§ Must never free memory not currently allocated

• Also must only use free with previously malloc’ed blocks

v Allocators
§ Can’t control number or size of allocated blocks
§ Must respond immediately to malloc
§ Must allocate blocks from free memory
§ Must align blocks so they satisfy all alignment requirements
§ Can’t move the allocated blocks

18

CSE351, Autumn 2018L24: Memory Allocation I

Performance Goals
v Goals: Given some sequence of malloc and free

requests !", !$, … , !&,… , !'($, maximize throughput
and peak memory utilization
§ These goals are often conflicting

1) Throughput
§ Number of completed requests per unit time
§ Example:

• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

19

CSE351, Autumn 2018L24: Memory Allocation I

Performance Goals
v Definition: Aggregate payload !"

§ malloc(p) results in a block with a payload of p bytes
§ After request #" has completed, the aggregate payload !"

is the sum of currently allocated payloads

v Definition: Current heap size $"
§ Assume $" is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization
§ Defined as %" = (max

+,"
!+)/$" after /+1 requests

§ Goal: maximize utilization for a sequence of requests
§ Why is this hard? And what happens to throughput?

20

CSE351, Autumn 2018L24: Memory Allocation I

Fragmentation
v Poor memory utilization is caused by fragmentation

§ Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

§ Two types: internal and external

v Recall: Fragmentation in structs
§ Internal fragmentation was wasted space inside of the struct

(between fields) due to alignment
§ External fragmentation was wasted space between struct

instances (e.g. in an array) due to alignment

v Now referring to wasted space in the heap inside or
between allocated blocks

21

CSE351, Autumn 2018L24: Memory Allocation I

Internal Fragmentation
v For a given block, internal fragmentation occurs if

payload is smaller than the block

v Causes:
§ Padding for alignment purposes
§ Overhead of maintaining heap data structures (inside block,

outside payload)
§ Explicit policy decisions (e.g. return a big block to satisfy a

small request)
v Easy to measure because only depends on past

requests
22

payload Internal
fragmentation

block

Internal
fragmentation

CSE351, Autumn 2018L24: Memory Allocation I

External Fragmentation
v For the heap, external fragmentation occurs when

allocation/free pattern leaves “holes” between blocks
§ That is, the aggregate payload is non-continuous
§ Can cause situations where there is enough aggregate heap memory to

satisfy request, but no single free block is large enough

v Don’t know what future requests will be
§ Difficult to impossible to know if past placements will become

problematic
23

p1 = malloc(8*4)

p2 = malloc(8*5)

p3 = malloc(8*6)

free(p2)

p4 = malloc(8*6) Oh no! (What would happen now?)

= 8-byte box

CSE351, Autumn 2018L24: Memory Allocation I

Peer Instruction Question
v Which of the following statements is FALSE?

A. Temporary arrays should not be allocated on the
Heap

B. malloc returns an address filled with garbage
C. Peak memory utilization is a measure of both

internal and external fragmentation
D. An allocation failure will cause your program to

stop
E. We’re lost…

24

CSE351, Autumn 2018L24: Memory Allocation I

Implementation Issues
v How do we know how much memory to free given

just a pointer?
v How do we keep track of the free blocks?
v How do we pick a block to use for allocation (when

many might fit)?
v What do we do with the extra space when allocating

a structure that is smaller than the free block it is
placed in?

v How do we reinsert a freed block into the heap?

25

CSE351, Autumn 2018L24: Memory Allocation I

Knowing How Much to Free
v Standard method

§ Keep the length of a block in the box preceding the block
• This box is often called the header field or header
• Can hold some other stuff too

§ Requires an extra box for every allocated block

26

free(p0)

p0 = malloc(8*4)

p0

block size data

40

= 8-byte box (free)

= 8-byte box (allocated)

CSE351, Autumn 2018L24: Memory Allocation I

Keeping Track of Free Blocks
1) Implicit free list using length – links all blocks using math

§ No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
§ Different free lists for different size “classes”

4) Blocks sorted by size
§ Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
27

40 32 1648

40 32 1648

= 8-byte box (free)

= 8-byte box (allocated)

CSE351, Autumn 2018L24: Memory Allocation I

Implicit Free Lists
v For each block we need: size, is-allocated?

§ Could store using two boxes, but wasteful

v Standard trick

§ If blocks are aligned, some low-order bits of size are always 0

§ Use lowest bit as an allocated/free flag (fine as long as aligning to !>1)

§ When reading size, must remember to mask out this bit!

28

Format of
allocated and

free blocks:

a = 1: allocated block

a = 0: free block

size: block size (in bytes)

payload: application data

(allocated blocks only)

size

8 bytes

payload

a

optional

padding

e.g. with 8-byte alignment,

possible values for size:

00001000 = 8 bytes

00010000 = 16 bytes

00011000 = 24 bytes

. . .

If x is first box (header):

x = size | a;

a = x & 1;

size = x & ~1;

CSE351, Autumn 2018L24: Memory Allocation I

Implicit Free List Example

v 16-byte alignment for payload
§ May require initial padding (internal fragmentation)

§ Note size: padding is considered part of previous block

v Special one-box marker (0|1) marks end of list
§ Zero size is distinguishable from all other blocks

29

16|0 32|1 64|0 32|1 0|1

Free box

Allocated box

Allocated box
unused

Start of heap

16 bytes = 2 box alignment

v Each block begins with header (size in bytes and allocated bit)

v Sequence of blocks in heap (size|allocated):
16|0, 32|1, 64|0, 32|1

CSE351, Autumn 2018L24: Memory Allocation I

Implicit List: Finding a Free Block
v First fit

§ Search list from beginning, choose first free block that fits:

§ Can take time linear in total number of blocks
§ In practice can cause “splinters” at beginning of list

30

p = heap_start;
while ((p < end) && // not past end

((*p & 1) || // already allocated
(*p <= len))) { // too small

p = p + (*p & ~1); // go to next block (UNSCALED +)
} // p points to selected block or end

(*p) gets the block
header

(*p & 1) extracts the
allocated bit

(*p & ~1) extracts
the size

16|0 32|1 64|0 32|1 0|1

Free box

Allocated box

Allocated box
unused

p = heap_start

CSE351, Autumn 2018L24: Memory Allocation I

Implicit List: Finding a Free Block
v Next fit

§ Like first-fit, but search list starting where previous search
finished

§ Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

§ Some research suggests that fragmentation is worse

v Best fit
§ Search the list, choose the best free block: large enough

AND with fewest bytes left over
§ Keeps fragments small—usually helps fragmentation
§ Usually worse throughput

v Best-of-first & Best-of-next

31

