w UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

rI\//I_'emory ﬁllocYationl\émﬁ-’i—‘"‘J

CSE 351 Autumn 2019 Also some Wl
Instructors: Teaching Assistants:
Max Willsey Britt Henderson Daniel Snitkovsky
Luis Ceze Lukas Joswiak Luis Vega
Josie Lee Kory Watson
Wei Lin lvy Yu
OKAY, HUMAN. YOU KNOW WHEN YOORE | AND SUDDENLY You | WELL, THATS WHAT A
HOH? S FALLING ASLEER AND MISSTEP, STUMBLE, | SEGFAULT FEELS UKE.
1UR: YOU IMAGINE YOURSELF | AND JOLT AWAKE? 3
BEFORE You WALKING OR YEAH! DOUBLE - CHECK YOUR
HIT (OMPLLE; WV SOVETHING, AL | DAY PONTERS, OkeY?
LISTEN VP 2

https://xkcd.com/371/

https://xkcd.com/627/

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Administrivia

% One extra late day
< HWS5 out now, Lab 5 today

+ Final Exam: Tue, March 19, 8:30-10:20am in KNE 130
" Review in next week’s section

= Stay tuned

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

. This is extra
Page Tables vs. Reality (non-testable)
material
+» VM looks cool, but there’s just one issue... the
numbers don’t work out for the story SO farl 5

17 13
2 2 s L
+» The problem is the page/table for each/process:

o Supposem 8 KiB pages, 8 GiB physical memory

" How many page table entries is that?

" Moral: Cannot use this naive implementation of the
virtual->physical page mapping — it’s way too big

w UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

This is extra

Multi-level Page Tables (non-testable)

material

103 106 10° 1012 10

[c)ac_ | ¥

L0OS

W UNIVERSITY of WASHINGTON

L24: Memory Allocation |

CSE351, Autumn 2018

This is extra
A Solution: Multi-level Page Tables |(

on-testable)

material
Page table This is called a page walk
base register
(PTBR) VRN
(. Virtual Address ﬁ
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
-
Level 1 Level 2 Level k
page table page table page table
- > > >
: > PPN | }—
TLB m-1 : ply O
PPN PPO
VPN |>| PTE .
Physical Address
VPN [>| PTE
VPN [>| PTE

W UNIVERSITY of WASHINGTON

L24: Memory Allocation |

CSE351, Autumn 2018

This is extra

Multi-level Page Tables (non-testable)

material

. A tree of depth k where each node at depth i has up to 2/
children if part i of the VPN has j bits

Hardware for multi-level page tables inherently more
complicated

= Butit’s a necessary complexity — 1-level does not fit

» Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory

= Parts created can be evicted from cache/memory when not being used
= Each node can have a size of ~1-100KB

- TLB hit gives you entire mapping! (only 1 memory access)

\
But a TLB miss requires k + 1§cache/memory accesses

" Fine so long as TLB misses are rare — motivates larger TLBs

W UNIVERSITY of WASHINGTON

L24: Memory Allocation |

CSE351, Autumn 2018

Roadmap

C: Java: Memory & data
car *c = G\allo@sizeof (car)) ; Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free (@) ; c.getMPG() ; Arrays & structs
~ &~ Memory & caches
Assembly get_mpg: Processes
language: pushq Srbp Nirtuatmemory-
) movq $rsp, %rbp _
Memory allocation
pPopq srbp Javavs. C
ret i
\ 4
Machine 0111010000011000 \/
de: 100011010000010000000010 A
cOde: 1000100111000010 ye
110000011111101000011111 Windows 10 05 X Yosermite —ater
| |
v v
Computer

system:

W UNIVERSITY of WASHINGTON

L24: Memory Allocation |

Multiple Ways to Store Program Data

R/
0‘0

R/
0‘0

R/
0‘0

Static global data
" Fixed sizeat compile-time

= Entire lifetime of the program
(loaded from executable)

= Portion is read-only
(e.g. string literals)

Stack-allocated data

" Local/temporary variables

CSE351, Autumn 2018

N
—

int array([1024];

void foo (int n) {
gint tmp;
int local array(nl;

int* dyn =
(int*)malloc (n*sizedFHAL)

b

Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

Dynamic (heap) data

= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Memory Allocation

*

Dynamic memory allocation

" |Introduction and goals

" Allocation and deallocation (free)
®" Fragmentation

&

Explicit allocation implementation
" Implicit free lists

= Explicit free lists (Lab 5)

= Segregated free lists

%

0’0

Implicit deallocation: garbage collection
+» Common memory-related bugs in C

*

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Dynamic Memory Allocation

+» Programmers use dynamic memory allocators to
acquire virtual memory at run time, [User stack

i
" For data structures whose size f ‘
(or lifetime) is known only at runtim 6 Heap (viamalloc)

o Manage the heap Of a process' [Uninitialized data (.bss)

virtual memory: Initialized data (. data)
' Program text (. text)

0
+ Types of allocators

= Explicit allocator: programmer allocates and frees space
-@Example: mallocand freeinC

" Implicit allocator: programmer only allocates space (no free)

- Example: garbage collection in Java, Javascript, Python, Lisp

10

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Dynamic Memory Allocation

+ Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack

ignored here) [‘

g «— Top of heap

eap attdc) (brk ptr)

Uninitialized data (.bss)
Initialized data (. data)
Program text (. text)

11

L24: Memory Allocation | CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON

Allocating Memory in C

« Needto #include <stdlib.h>

*

« wvoid* mall ize t size
rod a oc(js e j

= Allocates a Eontinuéus block of size JI:)ytes of uninitialized memory
= Returns a pointer to the beginning of the allocated block; NULL indicates

failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+» Good practices:

-
" ptr = l?ilnt*)[z malloc (@Of (1nt));

sizeof makes code more portable

- void* isimplicitly cast into any pointer type; explicit typecast will help you

catch coding errors when pointer types don’t match

12

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Allocating Memory in C

» Needto #include <stdlib.h>

+ void* malloc(size t size)
= Allocates a continuous block of size bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+ Related functions: A S 2

" void* calloc(size t nitems, size t size)
“Zeros out” allocated block

" void* realloc(void* ptr, size_t size)
. Changes the size of a previously allocated block (if possible)

" void* sbrk(intptr t 1ncrement)
(g T
Used internally by allocators to grow or shrink the heap

13

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Freeing Memory in C

Need to #include <stdlib.h>
» vold free (void* p),. —

—

Releases whole block pointed to by p to the pool of available
memory

Pointer p must be the original address
" returned bym/c/realloc (i.e. beginning of the block)

= otherwise system exception raised (maybe)

Don’t call free on a block that has already been released or
on NULL

= Anything could happen!
= “double-free” errors

14

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Memory Allocation Example in C

void foo(int n, int m) {
int i, *p;
p = (int*) malloc(n*sizeof (int)); /* allocate block of nints */

if (p == NULL) { /* check for allocation error */

perror ("malloc") ; €= prints message relates o errno
exit (0);

(for (1=0; 1<n, i++)> /* initialize int array */
l =

.
’

/* add space for m ints to end of p block */
o =)I::§2I]realloc(£,(n+m;*sizeof(int));
if (p == NULL) { /* check for allocation error */
perror ("realloc");
exit (0);

}

for ([i=n|; i <’}EF_@ i++) /* initialize new spaces */
pli] = 1i;

for (1i=0; i<n+m; 1i++) /* print new array */
printf ("$d\n", pli]);

free (p); /* freep */

15

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Notation m

/

+» We will draw memory divided into boxes
= Each box can hold an 64 bits/8 bytes

= Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes)

= Book and old videos use 4-byte word instead of 8-byte box
- Holdover from 32-bit version of textbook

R
)
\ v J ; ,_}
Allocated block Free block
(4 boxes) (3 boxes) Free box

Allocated box

16

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box

Allocation Example

— 7

pl = malloc (8*4)

p2 = malloc (8*5)

pP3 = malloc (8*06)

e

free (p2)

p4 = malloc (8*2)

L/_J e 1 ____j y r

17

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implementation Interface

+ Applications

" Canissue arbitrary sequence of malloc and free requests

" Must never access memory not currently allocated

" Must never free memory not currently allocated

« Also must only use free with previously malloc’ed blocks

« Allocators

® Can’t control number or size of allocated blocks
" Must respond immediatelytomalloc

" Must allocate blocks from free memory

"= Must align blocks so they satisfy all alignment requirements

" Can’t move the allocated blocks
e

18

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Performance Goals

+» @oals: Given some sequence ofmalloc and free
requests Ry, Ry, ..., Ry, ..., R,—1, maximize throughput
and peak memory utilization

o Thesg&als are often conflicting

1) Throughput

" Number of completed requests per unit time

" Example:

- 1f 5,000 malloc callsand 5,000 e calls completed in 10 seconds,
then throughput is 1,000 operations/second

19

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Performance Goals

+ Definition: Aggregate payload P,
" malloc (p) resultsin a block with a payload of p bytes

= After request R; has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size Hy,

= Assume H;, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

—

I ¥ ok
2) Peak Memory Utilization = [wck 73
= Defined as U, = [(max Pi)?/\f_{ﬁ after k+1 requests
L) LS

" Goal: maximize utilization for a sequence of requests
" Why is this hard? And what happens to throughput?

20

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Fragmentation

+ Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

"= Two types: internal and external

+~ Recall: Fragmentation in structs

" |nternal fragmentation was wasted spaceigs‘i_cj_e_ of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alighment

+» Now referring to wasted space in the heap inside or
between allocated blocks

21

CSE351, Autumn 2018

W UNIVERSITY of WASHINGTON L24: Memory Allocation |

Internal Fragmentation

+» For a given block, internal fragmentation occurs if
payload |sgsmaller than the block

bIock

Internal W load \ Internal
fragmentation (Shllee T fragmentation
+ Causes: <
= Padding for allgnment purposes

" QOverhead of maintaining heap data structures (inside block,
outside payloa

" Explicit policy decisions (e.g. return a big block to satisfy a
small request)

+ Easy to measure because only depends on past
requests

22

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box

External Fragmentation

+» For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
= That s, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

pl = malloc (8*4)

p2 = malloc (8*5)

p3 = malloc (8*6)

— —

free (p2)

—
p4 = malloc (8*6) Ohno! (What would happen now?)
—

= Don’t know what future requests will be

= Difficult to impossible to know if past placements will become
problematic

23

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Peer Instruction Question

+» Which of the following statements is FALSE?

[(D/‘Q«_('L(/ T a
A. Temporary arrays should not be allocated on the
Heap

B. malloc returns an address filled with garbage

C. Peak memory atilization is a measure of both
internal and external fragmentation

n allocation failure will cause your program to
stop

E. We're lost...

24

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implementation Issues

» How do we know how much memory to free given
just a pointer?

» How do we keep track of the free blocks?

» How do we pick a block to use for allocation (when
many might fit)?

+ What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

25

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box (free)

Knowing How Much to Free _ g-byte box (allocated)

% Standard method
= Keep the length of a block in the box preceding the block

- This box is often called the header field or header
« Can hold some other stuff too

= Requires an extra box for every allocated block

0
PO = malloc (8*4) 40
block size data

free (p0)

26

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

-

- ' O Na.” S a

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/\

~ 32 48 16

40| -

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
27

W UNIVERSITY of WASHINGTON

Implicit Free Lists

+» For each block we need: size, is-allocated?

L24: Memory Allocation |

= Could store using two boxes, but wasteful

« Standard trick

CSE351, Autumn 2018

e.g. with 8-byte alignment,

possible values for size:
00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes

1

= |f blocks are aligned, some low-order bits of size are always O

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)
= When reading size, must remember to mask out this bit!

8 bytes
AN
' N
Format of size 5
allocated and
free blocks:
payload
optional
padding

a =1: allocated block
a=0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

If x is first box (header):

X = slze | a;
a =x & 1;
size = x & ~1;

28

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implicit Free List Example

/
0.0

Each block begins with header (size in bytes and allocated bit)

+» Sequence of blocks in heap (size|allocated):
16|10, 32|1, 640, 32]|1

Start of heap Free box

2160 32|1

O}t Allocated box

321

s Allocated box
unused

16 bytes = 2 box alignment

16-byte alignment for payload

= May require initial padding (internal fragmentation)

/7
0’0

"= Note size: padding is considered part of previous block

Special one-box marker (0]|1) marks end of list
= Zero size isdistinguishable from all other blocks

/7
0’0

29

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

(*p) gets the block
header

Implicit List: Finding a Free Block | s 1extractsthe

allocated bit

. . (*p & ~1) extracts
+ First fit the size

= Search list from beginning, choose first free block that fits:

p = heap start;
while ((p < end) && // not past end
((*p & 1) || // already allocated
(*p <= len))) { // too small
p=p+ (*p & ~1); // go to next block (UNSCALED +)
} // p polints to selected block or end

" Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

p = heap start
- Free box

O Allocated box

160 321 321

Allocated box
unused

30

W UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Autumn 2018

Implicit List: Finding a Free Block

+» Next fit

= Like first-fit, but search list starting where previous search
finished

" Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse

% Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

« Best-of-first & Best-of-next

31

