
CSE351, Winter 2019L22: Virtual Memory II

Virtual Memory I
CSE 351 Winter 2019

https://xkcd.com/1495/

Instructors:
Max Willsey

Luis Ceze

Teaching Assistants:
Britt Henderson

Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky

Luis Vega

Kory Watson

Ivy Yu

https://xkcd.com/1495/

CSE351, Winter 2019L22: Virtual Memory II

Roadmap

2

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2019L22: Virtual Memory II

Virtual Memory (VM*)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

3
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning: Virtual memory is pretty complex,
but crucial for understanding how processes

work and for debugging performance

CSE351, Winter 2019L22: Virtual Memory II

Memory as we know it so far… is virtual!
v Programs refer to virtual memory addresses

§ movq (%rdi),%rax
§ Conceptually memory is just a very large array of bytes
§ System provides private address space to each process

v Allocation: Compiler and run-time system
§ Where different program objects should be stored
§ All allocation within single virtual address space

v But…
§ We probably don’t have 2w bytes of physical memory
§ We certainly don’t have 2w bytes of physical memory

for every process
§ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
4

0xFF······F

0x00······0

CSE351, Winter 2019L22: Virtual Memory II

Problem 1: How Does Everything Fit?

5

64-bit virtual addresses can address

several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers

a few gigabytes

(e.g. 8,589,934,592 bytes)

?

1 virtual address space per process,

with many processes…

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

CSE351, Winter 2019L22: Virtual Memory II

Problem 2: Memory Management

6

Physical main memory

What goes
where?

stack
heap

.text

.data
…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple
processes:

CSE351, Winter 2019L22: Virtual Memory II

Problem 3: How To Protect

7

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

CSE351, Winter 2019L22: Virtual Memory II

How can we solve these problems?
v “Any problem in computer science can be solved by adding

another level of indirection.” – David Wheeler, inventor of the subroutine

v Without Indirection

v With Indirection

8

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing

CSE351, Winter 2019L22: Virtual Memory II

Indirection
v Indirection: The ability to reference something using a name,

reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.
§ Adds some work (now have to look up 2 things instead of 1)
§ But don’t have to track all uses of name/address (single source!)

v Examples:
§ Phone system: cell phone number portability
§ Domain Name Service (DNS): translation from name to IP address
§ Call centers: route calls to available operators, etc.
§ Dynamic Host Configuration Protocol (DHCP): local network address

assignment

9

CSE351, Winter 2019L22: Virtual Memory II

Indirection in Virtual Memory

10

v Each process gets its own private virtual address space
v Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

Process !

mapping

CSE351, Winter 2019L22: Virtual Memory II

Address Spaces
v Virtual address space: Set of N = 2$ virtual addr

§ {0, 1, 2, 3, …, N-1}

v Physical address space: Set of M = 2& physical addr
§ {0, 1, 2, 3, …, M-1}

v Every byte in main memory has:
§ one physical address (PA)
§ zero, one, or more virtual addresses (VAs)

11

CSE351, Winter 2019L22: Virtual Memory II

Mapping
v A virtual address (VA) can be mapped to either physical

memory or disk
§ Unused VAs may not have a mapping
§ VAs from different processes may map to same location in memory/disk

12

Process 2’s Virtual
Address Space

Physical
Memory

Disk

Process 1’s Virtual
Address Space

“Swap Space”

CSE351, Winter 2019L22: Virtual Memory II

A System Using Physical Addressing

13

v Used in “simple” systems with (usually) just one process:
§ Embedded microcontrollers in devices like cars, elevators, and digital

picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address (PA)

Data (int/float)

8: ...

0x4

CSE351, Winter 2019L22: Virtual Memory II

A System Using Virtual Addressing

14

v Physical addresses are completely invisible to programs
§ Used in all modern desktops, laptops, servers, smartphones…
§ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...
CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

CSE351, Winter 2019L22: Virtual Memory II

Why Virtual Memory (VM)?
v Efficient use of limited main memory (RAM)

§ Use RAM as a cache for the parts of a virtual address space
• Some non-cached parts stored on disk
• Some (unallocated) non-cached parts stored nowhere

§ Keep only active areas of virtual address space in memory
• Transfer data back and forth as needed

v Simplifies memory management for programmers
§ Each process “gets” the same full, private linear address space

v Isolates address spaces (protection)
§ One process can’t interfere with another’s memory

• They operate in different address spaces
§ User process cannot access privileged information

• Different sections of address spaces have different permissions

15

CSE351, Winter 2019L22: Virtual Memory II

VM and the Memory Hierarchy
v Think of virtual memory as array of N = 2$ contiguous bytes

v Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk
§ Pages are another unit of aligned memory (size is P = 2& bytes)

§ Each virtual page can be stored in any physical page (no fragmentation!)

16

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated

Unallocated

0

2n-1

PP 2m-p-1

Physical memory
Empty

Empty

PP 0
PP 1

Empty

2m-1

0

V
ir

tu
al

 p
ag

es
 (V

P'
s)

Disk

Physical pages (PP's)

“Swap Space”

CSE351, Winter 2019L22: Virtual Memory II

or: Virtual Memory as DRAM Cache for Disk
v Think of virtual memory as an array of N = 2$ contiguous

bytes stored on a disk
v Then physical main memory is used as a cache for the

virtual memory array
§ These “cache blocks” are called pages (size is P = 2& bytes)

17

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
“stored on disk”

Physical pages (PPs)
cached in DRAM

CSE351, Winter 2019L22: Virtual Memory II

Memory Hierarchy: Core 2 Duo

18

DiskMain
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:
Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Not drawn to scale

Miss Penalty
(latency)

33x

Miss Penalty
(latency)
10,000x

SRAM
Static Random Access Memory

DRAM
Dynamic Random Access Memory

CSE351, Winter 2019L22: Virtual Memory II

Virtual Memory Design Consequences
v Large page size: typically 4-8 KiB or 2-4 MiB

§ Can be up to 1 GiB (for “Big Data” apps on big computers)

§ Compared with 64-byte cache blocks

v Fully associative

§ Any virtual page can be placed in any physical page

§ Requires a “large” mapping function – different from CPU caches

v Highly sophisticated, expensive replacement algorithms in OS

§ Too complicated and open-ended to be implemented in hardware

v Write-back rather than write-through
§ Really don’t want to write to disk every time we modify something in

memory

§ Some things may never end up on disk (e.g. stack for short-lived process)

19

CSE351, Winter 2019L22: Virtual Memory II

Why does VM work on RAM/disk?
v Avoids disk accesses because of locality

§ Same reason that L1 / L2 / L3 caches work

v The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set
§ If (working set of one process ≤ physical memory):

• Good performance for one process (after compulsory misses)

§ If (working sets of all processes > physical memory):
• Thrashing: Performance meltdown where pages are swapped

between memory and disk continuously (CPU always waiting or
paging)

• This is why your computer can feel faster when you add RAM

20

CSE351, Winter 2019L22: Virtual Memory II

Virtual Memory (VM)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

21

CSE351, Winter 2019L22: Virtual Memory II

Address Translation

22

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

How do we perform the virtual
→ physical address translation?

CSE351, Winter 2019L22: Virtual Memory II

Address Translation: Page Tables
v CPU-generated address can be split into:

§ Request is Virtual Address (VA), want Physical Address (PA)

§ Note that Physical Offset = Virtual Offset (page-aligned)

v Use lookup table that we call the page table (PT)
§ Replace Virtual Page Number (VPN) for Physical Page

Number (PPN) to generate Physical Address

§ Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

§ Has an entry for every virtual page – why?

23

Virtual Page Number Page Offset!-bit address:

CSE351, Winter 2019L22: Virtual Memory II

Page Table Diagram

v Page tables stored in physical memory
§ Too big to fit elsewhere – managed by MMU & OS

v How many page tables in the system?
§ One per process

24

Page Table
(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0: 0

PTE 7: 7

PTE 1: 1
PTE 2: 2
PTE 3: 3
PTE 4: 4
PTE 5: 5
PTE 6: 6

......

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual page #

Physical memory
(DRAM)

PP 0

PP 3

PP 2

PP 1

VP 1

VP 2

VP 7

VP 4

Physical page #

CSE351, Winter 2019L22: Virtual Memory II

CPU

Page Table Address Translation

25

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (VA)

Physical address (PA)

Valid PPN

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

In most cases, the MMU can
perform this translation

without software assistance

CSE351, Winter 2019L22: Virtual Memory II

Page Hit
v Page hit: VM reference is in physical memory

26

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Virtual address

Example: Page size = 4 KiB

0x00740bVirtual Addr:

VPN: PPN:

Physical Addr:

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

CSE351, Winter 2019L22: Virtual Memory II

Page Fault
v Page fault: VM reference is NOT in physical memory

27

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

Example: Page size = 4 KiB
Provide a virtual address request (in hex) that
results in this particular page fault:

Virtual Addr:

CSE351, Winter 2019L22: Virtual Memory II

Page Fault Exception
v User writes to memory location
v That portion (page) of user’s memory

is currently on disk

v Page fault handler must load page into physical memory
v Returns to faulting instruction: mov is executed again!

§ Successful on second try
28

int a[1000];
int main ()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault
Create page and
load into memoryreturns

movl
handle_page_fault:

CSE351, Winter 2019L22: Virtual Memory II

Handling a Page Fault
v Page miss causes page fault (an exception)

29

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

CSE351, Winter 2019L22: Virtual Memory II

Handling a Page Fault
v Page miss causes page fault (an exception)
v Page fault handler selects a victim to be evicted (here VP 4)

30

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

CSE351, Winter 2019L22: Virtual Memory II

Handling a Page Fault
v Page miss causes page fault (an exception)
v Page fault handler selects a victim to be evicted (here VP 4)

31

Page Table (DRAM)

null

null

0
1

0

0
1
1
1
0

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 3

Virtual memory
(DRAM/disk)

VP 4
VP 6

Virtual address

CSE351, Winter 2019L22: Virtual Memory II

Handling a Page Fault
v Page miss causes page fault (an exception)
v Page fault handler selects a victim to be evicted (here VP 4)
v Offending instruction is restarted: page hit!

32

Page Table (DRAM)

null

null

0
1

0

0
1
1
1
0

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 3

Virtual memory
(DRAM/disk)

VP 4
VP 6

Virtual address

CSE351, Winter 2019L22: Virtual Memory II

Peer Instruction Question
v How many bits wide are the following fields?

§ 16 KiB pages
§ 48-bit virtual addresses
§ 16 GiB physical memory

33

34 24(A)
32 18(B)
30 20(C)
34 20(D)

VPN PPN

CSE351, Winter 2019L22: Virtual Memory II

Virtual Memory (VM)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

34

CSE351, Winter 2019L22: Virtual Memory II

VM for Managing Multiple Processes
v Key abstraction: each process has its own virtual address space

§ It can view memory as a simple linear array

v With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
§ Process needs to store data in another VP? Just map it to any PP!

35

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Winter 2019L22: Virtual Memory II

Simplifying Linking and Loading
v Linking

§ Each program has similar virtual
address space

§ Code, Data, and Heap always
start at the same addresses

v Loading
§ execve allocates virtual pages

for .text and .data sections
& creates PTEs marked as invalid

§ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

36

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from the
executable
file

CSE351, Winter 2019L22: Virtual Memory II

VM for Protection and Sharing
v The mapping of VPs to PPs provides a simple mechanism to

protect memory and to share memory between processes
§ Sharing: map virtual pages in separate address spaces to the same

physical page (here: PP 6)
§ Protection: process can’t access physical pages to which none of its

virtual pages are mapped (here: Process 2 can’t access PP 2)

37

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1
(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Winter 2019L22: Virtual Memory II

Memory Protection Within Process
v VM implements read/write/execute permissions

§ Extend page table entries with permission bits
§ MMU checks these permission bits on every memory access

• If violated, raises exception and OS sends SIGSEGV signal to process
(segmentation fault)

38

•••

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Process i: PPNWRITE EXEC
PP 6No No
PP 4No Yes
PP 2Yes No

READ
Yes
Yes
Yes

VP 0:
VP 1:
VP 2:

Yes
Yes
Yes

Valid

Process j: WRITE EXEC
PP 9Yes No
PP 6No No

PP 11Yes No

READ
Yes
Yes
Yes

VP 0:
VP 1:
VP 2:

Yes
Yes
Yes

Valid PPN

CSE351, Winter 2019L22: Virtual Memory II

Review Question
v What should the permission bits be for pages from

the following sections of virtual memory?

39

Section Read Write Execute
Stack

Heap

Static Data

Literals

Instructions

CSE351, Winter 2019L22: Virtual Memory II

Address Translation: Page Hit

40

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA

PTE1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU

CSE351, Winter 2019L22: Virtual Memory II

Address Translation: Page Fault

41

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7

CSE351, Winter 2019L22: Virtual Memory II

Hmm… Translation Sounds Slow
v The MMU accesses memory twice: once to get the

PTE for translation, and then again for the actual
memory request
§ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references
• And a hit in the L1 cache still requires 1-3 cycles

v What can we do to make this faster?
§ Solution: add another cache! !

42

CSE351, Winter 2019L22: Virtual Memory II

Speeding up Translation with a TLB
v Translation Lookaside Buffer (TLB):

§ Small hardware cache in MMU
§ Maps virtual page numbers to physical page numbers
§ Contains complete page table entries for small number of

pages
• Modern Intel processors have 128 or 256 entries in TLB

§ Much faster than a page table lookup in cache/memory

43

TLB

PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Winter 2019L22: Virtual Memory II

TLB Hit

v A TLB hit eliminates a memory access!

44

MMU Cache/
Memory

PA

Data

CPU VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB
PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Winter 2019L22: Virtual Memory II

TLB Miss

v A TLB miss incurs an additional memory access (the PTE)
§ Fortunately, TLB misses are rare

45

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

TLB
PTEVPN →

PTEVPN →

PTEVPN →

CSE351, Winter 2019L22: Virtual Memory II

Fetching Data on a Memory Read
1) Check TLB

§ Input: VPN, Output: PPN
§ TLB Hit: Fetch translation, return PPN
§ TLB Miss: Check page table (in memory)

• Page Table Hit: Load page table entry into TLB
• Page Fault: Fetch page from disk to memory, update

corresponding page table entry, then load entry into TLB

2) Check cache
§ Input: physical address, Output: data
§ Cache Hit: Return data value to processor
§ Cache Miss: Fetch data value from memory, store it in

cache, return it to processor
46

CSE351, Winter 2019L22: Virtual Memory II

Address Translation

47

Virtual Address

TLB
Lookup

Check the
Page Table

Update
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access
Permitted

Protection
Fault

SIGSEGV

Page
in Mem

Check cacheFind in Disk Find in Mem

CSE351, Winter 2019L22: Virtual Memory II

Context Switching Revisited
v What needs to happen when the CPU switches

processes?
§ Registers:

• Save state of old process, load state of new process

• Including the Page Table Base Register (PTBR)

§ Memory:
• Nothing to do! Pages for processes already exist in memory/disk and

protected from each other

§ TLB:
• Invalidate all entries in TLB – mapping is for old process’ VAs

§ Cache:
• Can leave alone because storing based on PAs – good for shared data

48

CSE351, Winter 2019L22: Virtual Memory II

Summary of Address Translation Symbols
v Basic Parameters

§ N = 2$ Number of addresses in virtual address space
§ M = 2& Number of addresses in physical address space
§ P = 2(Page size (bytes)

v Components of the virtual address (VA)
§ VPO Virtual page offset
§ VPN Virtual page number
§ TLBI TLB index
§ TLBT TLB tag

v Components of the physical address (PA)
§ PPO Physical page offset (same as VPO)
§ PPN Physical page number

49

CSE351, Winter 2019L22: Virtual Memory II

Virtual Memory Summary
v Programmer’s view of virtual memory

§ Each process has its own private linear address space
§ Cannot be corrupted by other processes

v System view of virtual memory
§ Uses memory efficiently by caching virtual memory pages

• Efficient only because of locality
§ Simplifies memory management and sharing
§ Simplifies protection by providing permissions checking

50

CSE351, Winter 2019L22: Virtual Memory II

Memory System Summary
v Memory Caches (L1/L2/L3)

§ Purely a speed-up technique

§ Behavior invisible to application programmer and (mostly) OS

§ Implemented totally in hardware

v Virtual Memory

§ Supports many OS-related functions

• Process creation, task switching, protection

§ Operating System (software)

• Allocates/shares physical memory among processes

• Maintains high-level tables tracking memory type, source, sharing

• Handles exceptions, fills in hardware-defined mapping tables

§ Hardware

• Translates virtual addresses via mapping tables, enforcing permissions

• Accelerates mapping via translation cache (TLB)

51

