
CSE351, Winter 2019L21: Virtual Memory I

Processes &
Virtual Memory I
CSE 351 Winter 2019

ht
tp

:/
/r

eb
rn

.c
om

/r
e/

ba
d-

ch
ro

m
e-

11
62

08
2/

Instructors:
Max Willsey

Luis Ceze

Teaching Assistants:
Britt Henderson

Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky

Luis Vega

Kory Watson

Ivy Yu

http://rebrn.com/re/bad-chrome-1162082/

CSE351, Winter 2019L21: Virtual Memory I

Administrivia
v HW4 due Friday, Mar 1!

v Lab 3 due Monday, Mar 4!

2

CSE351, Winter 2019L21: Virtual Memory I

Processes
v Processes and context switching
v Creating new processes

§ fork(), exec*(), and wait()

v Zombies

3

CSE351, Winter 2019L21: Virtual Memory I

Processes
v A process is an instance of a running program

§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

v Process provides each program with two key
abstractions:
§ Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

§ Private address space
• Each program seems to have exclusive use of main memory
• Provided by kernel mechanism called virtual memory

4

CPU

Registers

Memory

Stack
Heap

Code
Data

CSE351, Winter 2019L21: Virtual Memory I

What is a process?

5

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

It’s an illusion!

CSE351, Winter 2019L21: Virtual Memory I

What is a process?

6

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

Process 2

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process 3

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process 4

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Operating
System

It’s an illusion!

CSE351, Winter 2019L21: Virtual Memory I

Multiprocessing: The Illusion

v Computer runs many processes simultaneously
§ Applications for one or more users

• Web browsers, email clients, editors, …
§ Background tasks

• Monitoring network & I/O devices
7

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

CSE351, Winter 2019L21: Virtual Memory I

Multiprocessing: The Reality

v Single processor executes multiple processes concurrently
§ Process executions interleaved, CPU runs one at a time
§ Address spaces managed by virtual memory system (later in course)
§ Execution context (register values, stack, …) for other processes saved in

memory 8

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CSE351, Winter 2019L21: Virtual Memory I

Multiprocessing

v Context switch
1) Save current registers in memory

9

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CSE351, Winter 2019L21: Virtual Memory I

Multiprocessing

v Context switch
1) Save current registers in memory
2) Schedule next process for execution

10

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CSE351, Winter 2019L21: Virtual Memory I

Multiprocessing

11

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

v Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

CSE351, Winter 2019L21: Virtual Memory I

Multiprocessing: The (Modern) Reality

v Multicore processors
§ Multiple CPUs (“cores”) on single chip
§ Share main memory (and some of the

caches)
§ Each can execute a separate process

• Kernel schedules processes to cores
• Still constantly swapping processes

12

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU

Registers

CSE351, Winter 2019L21: Virtual Memory I

Concurrent Processes
v Each process is a logical control flow
v Two processes run concurrently (are concurrent) if

their instruction executions (flows) overlap in time
§ Otherwise, they are sequential

v Example: (running on single core)
§ Concurrent: A & B, A & C
§ Sequential: B & C

13

Process A Process B Process C

time

Assume only one CPU

CSE351, Winter 2019L21: Virtual Memory I

User’s View of Concurrency
v Control flows for concurrent processes are physically

disjoint in time
§ CPU only executes instructions for one process at a time

v However, the user can think of concurrent processes
as executing at the same time, in parallel

14

Assume only one CPU

Process A Process B Process C

tim
e

Process A Process B Process C

User View

CSE351, Winter 2019L21: Virtual Memory I

Context Switching
v Processes are managed by a shared chunk of OS code

called the kernel
§ The kernel is not a separate process, but rather runs as part of a user

process

v In x86-64 Linux:
§ Same address in each process

refers to same shared
memory location

15

Assume only one CPU

CSE351, Winter 2019L21: Virtual Memory I

Context Switching
v Processes are managed by a shared chunk of OS code

called the kernel
§ The kernel is not a separate process, but rather runs as part of a user

process
v Context switch passes control flow from one process to

another and is performed using kernel code

16

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Exception

Assume only one CPU

CSE351, Winter 2019L21: Virtual Memory I

Processes
v Processes and context switching
v Creating new processes

§ fork() , exec*(), and wait()
v Zombies

17

CSE351, Winter 2019L21: Virtual Memory I

Process 2

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

18

Chrome.exe

Process 1

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE351, Winter 2019L21: Virtual Memory I

Creating New Processes & Programs
v fork-exec model (Linux):

§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address

space with the code for a different program
• Family: execv, execl, execve, execle, execvp, execlp

§ fork() and execve() are system calls

v Other system calls for process management:
§ getpid()
§ exit()
§ wait(), waitpid()

19

CSE351, Winter 2019L21: Virtual Memory I

fork: Creating New Processes
v pid_t fork(void)

§ Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

§ Returns 0 to the child process
§ Returns child’s process ID (PID) to the parent process

v Child is almost identical to parent:
§ Child gets an identical

(but separate) copy of the
parent’s virtual address
space

§ Child has a different PID
than the parent

v fork is unique (and often confusing) because it is called once
but returns “twice”

20

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

CSE351, Winter 2019L21: Virtual Memory I

Understanding fork

21

Process X (parent)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process Y (child)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

CSE351, Winter 2019L21: Virtual Memory I

Understanding fork

22

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid = Y pid = 0

Process X (parent)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process Y (child)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

CSE351, Winter 2019L21: Virtual Memory I

Understanding fork

23

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

pid = Y pid = 0

Process X (parent)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

Process Y (child)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else {

printf("hello from parent\n");
}

hello from parent hello from child

Which one appears first?

CSE351, Winter 2019L21: Virtual Memory I

Fork Example

v Both processes continue/start execution after fork
§ Child starts at instruction after the call to fork (storing into pid)

v Can’t predict execution order of parent and child
v Both processes start with x=1

§ Subsequent changes to x are independent

v Shared open files: stdout is the same in both parent and child

24

void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

CSE351, Winter 2019L21: Virtual Memory I

Modeling fork with Process Graphs
v A process graph is a useful tool for capturing the partial

ordering of statements in a concurrent program
§ Each vertex is the execution of a statement
§ a→ b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no inedges

v Any topological sort of the graph corresponds to a feasible
total ordering
§ Total ordering of vertices where all edges point from left to right

25

CSE351, Winter 2019L21: Virtual Memory I

Fork Example: Possible Output

26

void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

CSE351, Winter 2019L21: Virtual Memory I

Fork Example: Possible Output

27

void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

CSE351, Winter 2019L21: Virtual Memory I

Peer Instruction Question
v Are the following sequences of outputs possible?

28

void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…

CSE351, Winter 2019L21: Virtual Memory I

Peer Instruction Question
v Are the following sequences of outputs possible?

§ Vote at http://PollEv.com/justinh

29

void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…

http://pollev.com/justinh

CSE351, Winter 2019L21: Virtual Memory I

Fork-Exec
v fork-exec model:

§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address

space with the code for a different program
• Whole family of exec calls – see exec(3) and execve(2)

30

// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {

pid_t pid = fork();
if (pid != 0) {

printf("Parent: created a child %d\n", pid);
} else {

printf("Child: about to exec a new program\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

}

Note: the return values of fork and
exec* should be checked for errors

CSE351, Winter 2019L21: Virtual Memory I

Exec-ing a new program

31

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

exec*()

Very high-level diagram of what
happens when you run the
command “ls” in a Linux shell:
v This is the loading part of CALL!

parent child child

CSE351, Winter 2019L21: Virtual Memory I

execve Example

32

"/usr/bin/ls"
"-l"
"lab4"

"USER=jhsia"

"PWD=/homes/iws/jhsia"

myargv[argc] = NULL
myargv[2]
myargv[1]
myargv[0]

envp[n] = NULL
envp[n-1]
...
envp[0]environ

myargv

if ((pid = fork()) == 0) { /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

Execute "/usr/bin/ls –l lab4" in child process using current
environment:

(argc == 3)

Run the printenv command in a Linux shell to see your own environment variables

This is extra
(non-testable)

material

CSE351, Winter 2019L21: Virtual Memory I

Structure of
the Stack when
a new program
starts

33

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in %rdi)

This is extra
(non-testable)

material

CSE351, Winter 2019L21: Virtual Memory I

exit: Ending a process
v void exit(int status)

§ Explicitly exits a process
• Status code: 0 is used for a normal exit, nonzero for abnormal exit

v The return statement from main() also ends a
process in C
§ The return value is the status code

34

CSE351, Winter 2019L21: Virtual Memory I

Summary
v Processes

§ At any given time, system has multiple active processes
§ On a one-CPU system, only one can execute at a time, but

each process appears to have total control of the processor
§ OS periodically “context switches” between active processes

• Implemented using exceptional control flow

v Process management
§ fork: one call, two returns
§ execve: one call, usually no return
§ wait or waitpid: synchronization
§ exit: one call, no return

35

CSE351, Winter 2019L21: Virtual Memory I

Zombies
v A terminated process still consumes system resources

§ Various tables maintained by OS

§ Called a “zombie” (a living corpse, half alive and half dead)

v Reaping is performed by parent on terminated child
§ Parent is given exit status information and kernel then

deletes zombie child process

v What if parent doesn’t reap?
§ If any parent terminates without reaping a child, then the

orphaned child will be reaped by init process (pid == 1)
• Note: on recent Linux systems, init has been renamed systemd

§ In long-running processes (e.g. shells, servers) we need
explicit reaping

36

CSE351, Winter 2019L21: Virtual Memory I

wait: Synchronizing with Children
v int wait(int *child_status)

§ Suspends current process (i.e. the parent) until one of its
children terminates

§ Return value is the PID of the child process that terminated
• On successful return, the child process is reaped

§ If child_status != NULL, then the *child_status
value indicates why the child process terminated
• Special macros for interpreting this status – see man wait(2)

v Note: If parent process has multiple children, wait
will return when any of the children terminates
§ waitpid can be used to wait on a specific child process

37

CSE351, Winter 2019L21: Virtual Memory I

wait: Synchronizing with Children

38

void fork_wait() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

CSE351, Winter 2019L21: Virtual Memory I

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>
6641 ttyp9 00:00:00 ps

linux> kill 6639
[1] Terminated
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6642 ttyp9 00:00:00 ps

Example: Zombie

v ps shows child process as
“defunct”

v Killing parent allows child to be
reaped by init

39

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",

getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n",

getpid());
while (1); /* Infinite loop */

}
} forks.c

CSE351, Winter 2019L21: Virtual Memory I

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6676 ttyp9 00:00:06 forks
6677 ttyp9 00:00:00 ps

linux> kill 6676
linux> ps

PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6678 ttyp9 00:00:00 ps

Example:

v Child process still active even
though parent has terminated

v Must kill explicitly, or else will
keep running indefinitely

40

void fork8() {
if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1); /* Infinite loop */

} else {
printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

}
} forks.c

Non-terminating
Child

CSE351, Winter 2019L21: Virtual Memory I

Process Management Summary
v fork makes two copies of the same process (parent & child)

§ Returns different values to the two processes
v exec* replaces current process from file (new program)

§ Two-process program:
• First fork()
• if (pid == 0) { /* child code */ } else { /* parent code */ }

§ Two different programs:
• First fork()
• if (pid == 0) { execv(…) } else { /* parent code */ }

v wait or waitpid used to synchronize parent/child execution
and to reap child process

41

CSE351, Winter 2019L21: Virtual Memory I

Roadmap

42

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2019L21: Virtual Memory I

Virtual Memory (VM*)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

43
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning: Virtual memory is pretty complex,
but crucial for understanding how processes

work and for debugging performance

CSE351, Winter 2019L21: Virtual Memory I

Memory as we know it so far… is virtual!
v Programs refer to virtual memory addresses

§ movq (%rdi),%rax
§ Conceptually memory is just a very large array of bytes
§ System provides private address space to each process

v Allocation: Compiler and run-time system
§ Where different program objects should be stored
§ All allocation within single virtual address space

v But…
§ We probably don’t have 2w bytes of physical memory
§ We certainly don’t have 2w bytes of physical memory

for every process
§ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
44

0xFF······F

0x00······0

CSE351, Winter 2019L21: Virtual Memory I

Problem 1: How Does Everything Fit?

45

64-bit virtual addresses can address

several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers

a few gigabytes

(e.g. 8,589,934,592 bytes)

?

1 virtual address space per process,

with many processes…

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

CSE351, Winter 2019L21: Virtual Memory I

Problem 2: Memory Management

46

Physical main memory

What goes
where?

stack
heap

.text

.data
…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple
processes:

CSE351, Winter 2019L21: Virtual Memory I

Problem 3: How To Protect

47

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

CSE351, Winter 2019L21: Virtual Memory I

How can we solve these problems?
v “Any problem in computer science can be solved by adding

another level of indirection.” – David Wheeler, inventor of the subroutine

v Without Indirection

v With Indirection

48

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing

CSE351, Winter 2019L21: Virtual Memory I

Indirection
v Indirection: The ability to reference something using a name,

reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.
§ Adds some work (now have to look up 2 things instead of 1)
§ But don’t have to track all uses of name/address (single source!)

v Examples:
§ Phone system: cell phone number portability
§ Domain Name Service (DNS): translation from name to IP address
§ Call centers: route calls to available operators, etc.
§ Dynamic Host Configuration Protocol (DHCP): local network address

assignment

49

CSE351, Winter 2019L21: Virtual Memory I

Indirection in Virtual Memory

50

v Each process gets its own private virtual address space
v Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

Process !

mapping

CSE351, Winter 2019L21: Virtual Memory I

Address Spaces
v Virtual address space: Set of N = 2$ virtual addr

§ {0, 1, 2, 3, …, N-1}

v Physical address space: Set of M = 2& physical addr
§ {0, 1, 2, 3, …, M-1}

v Every byte in main memory has:
§ one physical address (PA)
§ zero, one, or more virtual addresses (VAs)

51

CSE351, Winter 2019L21: Virtual Memory I

Mapping
v A virtual address (VA) can be mapped to either physical

memory or disk
§ Unused VAs may not have a mapping
§ VAs from different processes may map to same location in memory/disk

52

Process 2’s Virtual
Address Space

Physical
Memory

Disk

Process 1’s Virtual
Address Space

“Swap Space”

CSE351, Winter 2019L21: Virtual Memory I

A System Using Physical Addressing

53

v Used in “simple” systems with (usually) just one process:
§ Embedded microcontrollers in devices like cars, elevators, and digital

picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address (PA)

Data (int/float)

8: ...

0x4

CSE351, Winter 2019L21: Virtual Memory I

A System Using Virtual Addressing

54

v Physical addresses are completely invisible to programs
§ Used in all modern desktops, laptops, servers, smartphones…
§ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...
CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

CSE351, Winter 2019L21: Virtual Memory I

Why Virtual Memory (VM)?
v Efficient use of limited main memory (RAM)

§ Use RAM as a cache for the parts of a virtual address space
• Some non-cached parts stored on disk
• Some (unallocated) non-cached parts stored nowhere

§ Keep only active areas of virtual address space in memory
• Transfer data back and forth as needed

v Simplifies memory management for programmers
§ Each process “gets” the same full, private linear address space

v Isolates address spaces (protection)
§ One process can’t interfere with another’s memory

• They operate in different address spaces
§ User process cannot access privileged information

• Different sections of address spaces have different permissions

55

CSE351, Winter 2019L21: Virtual Memory I

VM and the Memory Hierarchy
v Think of virtual memory as array of N = 2$ contiguous bytes

v Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk
§ Pages are another unit of aligned memory (size is P = 2& bytes)

§ Each virtual page can be stored in any physical page (no fragmentation!)

56

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated

Unallocated

0

2n-1

PP 2m-p-1

Physical memory
Empty

Empty

PP 0
PP 1

Empty

2m-1

0

V
ir

tu
al

 p
ag

es
 (V

P'
s)

Disk

Physical pages (PP's)

“Swap Space”

CSE351, Winter 2019L21: Virtual Memory I

or: Virtual Memory as DRAM Cache for Disk
v Think of virtual memory as an array of N = 2$ contiguous

bytes stored on a disk
v Then physical main memory is used as a cache for the

virtual memory array
§ These “cache blocks” are called pages (size is P = 2& bytes)

57

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0
VP 1

VP 2n-p-1

Virtual memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages (VPs)
“stored on disk”

Physical pages (PPs)
cached in DRAM

CSE351, Winter 2019L21: Virtual Memory I

Memory Hierarchy: Core 2 Duo

58

DiskMain
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:
Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Not drawn to scale

Miss Penalty
(latency)

33x

Miss Penalty
(latency)
10,000x

SRAM
Static Random Access Memory

DRAM
Dynamic Random Access Memory

CSE351, Winter 2019L21: Virtual Memory I

Virtual Memory Design Consequences
v Large page size: typically 4-8 KiB or 2-4 MiB

§ Can be up to 1 GiB (for “Big Data” apps on big computers)

§ Compared with 64-byte cache blocks

v Fully associative

§ Any virtual page can be placed in any physical page

§ Requires a “large” mapping function – different from CPU caches

v Highly sophisticated, expensive replacement algorithms in OS

§ Too complicated and open-ended to be implemented in hardware

v Write-back rather than write-through
§ Really don’t want to write to disk every time we modify something in

memory

§ Some things may never end up on disk (e.g. stack for short-lived process)

59

CSE351, Winter 2019L21: Virtual Memory I

Why does VM work on RAM/disk?
v Avoids disk accesses because of locality

§ Same reason that L1 / L2 / L3 caches work

v The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set
§ If (working set of one process ≤ physical memory):

• Good performance for one process (after compulsory misses)

§ If (working sets of all processes > physical memory):
• Thrashing: Performance meltdown where pages are swapped

between memory and disk continuously (CPU always waiting or
paging)

• This is why your computer can feel faster when you add RAM

60

CSE351, Winter 2019L21: Virtual Memory I

Virtual Memory (VM)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

61

CSE351, Winter 2019L21: Virtual Memory I

Address Translation

62

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

How do we perform the virtual
→ physical address translation?

CSE351, Winter 2019L21: Virtual Memory I

Address Translation: Page Tables
v CPU-generated address can be split into:

§ Request is Virtual Address (VA), want Physical Address (PA)

§ Note that Physical Offset = Virtual Offset (page-aligned)

v Use lookup table that we call the page table (PT)
§ Replace Virtual Page Number (VPN) for Physical Page

Number (PPN) to generate Physical Address

§ Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

§ Has an entry for every virtual page – why?

63

Virtual Page Number Page Offset!-bit address:

CSE351, Winter 2019L21: Virtual Memory I

Page Table Diagram

v Page tables stored in physical memory
§ Too big to fit elsewhere – managed by MMU & OS

v How many page tables in the system?
§ One per process

64

Page Table
(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0: 0

PTE 7: 7

PTE 1: 1
PTE 2: 2
PTE 3: 3
PTE 4: 4
PTE 5: 5
PTE 6: 6

......

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual page #

Physical memory
(DRAM)

PP 0

PP 3

PP 2

PP 1

VP 1

VP 2

VP 7

VP 4

Physical page #

CSE351, Winter 2019L21: Virtual Memory I

CPU

Page Table Address Translation

65

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (VA)

Physical address (PA)

Valid PPN

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

In most cases, the MMU can
perform this translation

without software assistance

CSE351, Winter 2019L21: Virtual Memory I

Page Hit
v Page hit: VM reference is in physical memory

66

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Virtual address

Example: Page size = 4 KiB

0x00740bVirtual Addr:

VPN: PPN:

Physical Addr:

Physical memory
(DRAM)

PP 0

PP 3

VP 1
VP 2
VP 7
VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

CSE351, Winter 2019L21: Virtual Memory I

Summary
v Virtual memory provides:

§ Ability to use limited memory (RAM) across multiple
processes

§ Illusion of contiguous virtual address space for each process
§ Protection and sharing amongst processes

v Indirection via address mapping by page tables
§ Part of memory management unit and stored in memory
§ Use virtual page number as index into lookup table that

holds physical page number, disk address, or NULL
(unallocated page)

§ On page fault, throw exception and move page from swap
space (disk) to main memory

67

CSE351, Winter 2019L21: Virtual Memory I

Detailed examples:
v wait() example
v waitpid() example

68

CSE351, Winter 2019L21: Virtual Memory I

wait() Example
v If multiple children completed, will take in arbitrary order
v Can use macros WIFEXITED and WEXITSTATUS to get

information about exit status

69

void fork10() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

CSE351, Winter 2019L21: Virtual Memory I

waitpid(): Waiting for a Specific Process
pid_t waitpid(pid_t pid,int &status,int options)

§ suspends current process until specific process terminates
§ various options (that we won’t talk about)

70

void fork11() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}

