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Administrivia
v HW4 due Friday, Mar 1!

v Lab 3 due Monday, Mar 4!
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Processes
v Processes and context switching
v Creating new processes

§ fork(), exec*(), and wait()

v Zombies

3
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Processes
v A process is an instance of a running program

§ One of the most profound ideas in computer science
§ Not the same as “program” or “processor”

v Process provides each program with two key 
abstractions:
§ Logical control flow

• Each program seems to have exclusive use of the CPU
• Provided by kernel mechanism called context switching

§ Private address space
• Each program seems to have exclusive use of main memory
• Provided by kernel mechanism called virtual memory
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What is a process?

5
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What is a process?
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Multiprocessing:  The Illusion

v Computer runs many processes simultaneously
§ Applications for one or more users

• Web browsers, email clients, editors, …
§ Background tasks

• Monitoring network & I/O devices
7
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Multiprocessing:  The Reality

v Single processor executes multiple processes concurrently
§ Process executions interleaved, CPU runs one at a time
§ Address spaces managed by virtual memory system (later in course)
§ Execution context (register values, stack, …) for other processes saved in 

memory 8
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Multiprocessing

v Context switch
1) Save current registers in memory
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Multiprocessing

v Context switch
1) Save current registers in memory
2) Schedule next process for execution
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Multiprocessing
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Multiprocessing:  The (Modern) Reality

v Multicore processors
§ Multiple CPUs (“cores”) on single chip
§ Share main memory (and some of the 

caches)
§ Each can execute a separate process

• Kernel schedules processes to cores
• Still constantly swapping processes
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Concurrent Processes
v Each process is a logical control flow 
v Two processes run concurrently (are concurrent) if 

their instruction executions (flows) overlap in time
§ Otherwise, they are sequential

v Example:  (running on single core)
§ Concurrent:  A & B, A & C
§ Sequential:  B & C

13

Process A Process B Process C

time

Assume only one CPU
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User’s View of Concurrency
v Control flows for concurrent processes are physically 

disjoint in time
§ CPU only executes instructions for one process at a time

v However, the user can think of concurrent processes 
as executing at the same time, in parallel

14

Assume only one CPU

Process A Process B Process C

tim
e

Process A Process B Process C

User View



CSE351, Winter 2019L21:  Virtual Memory I

Context Switching
v Processes are managed by a shared chunk of OS code 

called the kernel
§ The kernel is not a separate process, but rather runs as part of a user 

process

v In x86-64 Linux:
§ Same address in each process 

refers to same shared 
memory location

15

Assume only one CPU
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Context Switching
v Processes are managed by a shared chunk of OS code 

called the kernel
§ The kernel is not a separate process, but rather runs as part of a user 

process
v Context switch passes control flow from one process to 

another and is performed using kernel code

16
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Processes
v Processes and context switching
v Creating new processes

§ fork() , exec*(), and wait()
v Zombies

17
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Creating New Processes & Programs
v fork-exec model (Linux):

§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address 

space with the code for a different program
• Family:  execv, execl, execve, execle, execvp, execlp

§ fork() and execve() are system calls

v Other system calls for process management:
§ getpid()
§ exit()
§ wait(), waitpid()

19
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fork:  Creating New Processes
v pid_t fork(void)

§ Creates a new “child” process that is identical to the calling “parent” 
process, including all state (memory, registers, etc.)

§ Returns 0 to the child process
§ Returns child’s process ID (PID) to the parent process

v Child is almost identical to parent:
§ Child gets an identical 

(but separate) copy of the 
parent’s virtual address 
space

§ Child has a different PID 
than the parent

v fork is unique (and often confusing) because it is called once
but returns “twice”

20

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}
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Understanding fork

21

Process X    (parent)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

Process Y   (child)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}
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Understanding fork
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pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

pid = Y pid = 0

Process X    (parent)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

Process Y   (child)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}
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Understanding fork

23

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

pid = Y pid = 0

Process X    (parent)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

Process Y   (child)
pid_t pid = fork();
if (pid == 0) {

printf("hello from child\n");
} else { 

printf("hello from parent\n");
}

hello from parent hello from child

Which one appears first?
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Fork Example

v Both processes continue/start execution after fork
§ Child starts at instruction after the call to fork (storing into pid)

v Can’t predict execution order of parent and child
v Both processes start with x=1

§ Subsequent changes to x are independent

v Shared open files:  stdout is the same in both parent and child

24

void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}
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Modeling fork with Process Graphs
v A process graph is a useful tool for capturing the partial 

ordering of statements in a concurrent program
§ Each vertex is the execution of a statement
§ a→ b means a happens before b
§ Edges can be labeled with current value of variables
§ printf vertices can be labeled with output
§ Each graph begins with a vertex with no inedges

v Any topological sort of the graph corresponds to a feasible 
total ordering
§ Total ordering of vertices where all edges point from left to right

25
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Fork Example:  Possible Output
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void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0
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Fork Example:  Possible Output
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void fork1() {
int x = 1;
pid_t pid = fork();
if (pid == 0)

printf("Child has x = %d\n", ++x);
else

printf("Parent has x = %d\n", --x);
printf("Bye from process %d with x = %d\n", getpid(), x);

}

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0
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Peer Instruction Question
v Are the following sequences of outputs possible?

28

void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…
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Peer Instruction Question
v Are the following sequences of outputs possible?

§ Vote at http://PollEv.com/justinh
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void nestedfork() {
printf("L0\n");
if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {

printf("L2\n");
}

}
printf("Bye\n");

}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

A. No No
B. No Yes
C. Yes No
D. Yes Yes
E. We’re lost…

http://pollev.com/justinh
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Fork-Exec
v fork-exec model:

§ fork() creates a copy of the current process
§ exec*() replaces the current process’ code and address 

space with the code for a different program
• Whole family of exec calls – see exec(3) and execve(2)

30

// Example arguments: path="/usr/bin/ls",
//     argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {

pid_t pid = fork();
if (pid != 0) {

printf("Parent: created a child %d\n", pid);
} else {

printf("Child: about to exec a new program\n");
execv(path, argv);

}
printf("This line printed by parent only!\n");

}

Note: the return values of fork and 
exec* should be checked for errors
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Exec-ing a new program

31

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/bash
Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

exec*()

Very high-level diagram of what 
happens when you run the 
command “ls” in a Linux shell:
v This is the loading part of CALL!

parent child child
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execve Example

32

"/usr/bin/ls"
"-l"
"lab4"

"USER=jhsia"

"PWD=/homes/iws/jhsia"

myargv[argc] = NULL
myargv[2]
myargv[1]
myargv[0]

envp[n] = NULL
envp[n-1]
...
envp[0]environ

myargv

if ((pid = fork()) == 0) {   /* Child runs program */
if (execve(myargv[0], myargv, environ) < 0) {

printf("%s: Command not found.\n", myargv[0]);
exit(1);

}
}

Execute "/usr/bin/ls –l lab4" in child process using current 
environment:

(argc == 3)

Run the printenv command in a Linux shell to see your own environment variables

This is extra 
(non-testable) 

material
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Structure of 
the Stack when 
a new program 
starts

33

Null-terminated
environment variable strings

Null-terminated
command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global var)

Bottom of stack

Top of stack

argv
(in %rsi)

envp
(in %rdx)

Stack frame for 
libc_start_main

argc
(in %rdi)

This is extra 
(non-testable) 

material
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exit:  Ending a process
v void exit(int status)

§ Explicitly exits a process
• Status code:  0 is used for a normal exit, nonzero for abnormal exit

v The return statement from main() also ends a 
process in C
§ The return value is the status code

34
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Summary
v Processes

§ At any given time, system has multiple active processes
§ On a one-CPU system, only one can execute at a time, but 

each process appears to have total control of the processor
§ OS periodically “context switches” between active processes

• Implemented using exceptional control flow

v Process management
§ fork:  one call, two returns
§ execve:  one call, usually no return
§ wait or waitpid:  synchronization
§ exit:  one call, no return

35
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Zombies
v A terminated process still consumes system resources

§ Various tables maintained by OS

§ Called a “zombie” (a living corpse, half alive and half dead)

v Reaping is performed by parent on terminated child
§ Parent is given exit status information and kernel then 

deletes zombie child process

v What if parent doesn’t reap?
§ If any parent terminates without reaping a child, then the 

orphaned child will be reaped by init process (pid == 1)
• Note: on recent Linux systems, init has been renamed systemd

§ In long-running processes (e.g. shells, servers) we need 
explicit reaping

36
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wait:  Synchronizing with Children
v int wait(int *child_status)

§ Suspends current process (i.e. the parent) until one of its 
children terminates

§ Return value is the PID of the child process that terminated
• On successful return, the child process is reaped

§ If child_status != NULL, then the *child_status
value indicates why the child process terminated
• Special macros for interpreting this status – see  man wait(2)

v Note: If parent process has multiple children, wait
will return when any of the children terminates
§ waitpid can be used to wait on a specific child process

37
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wait:  Synchronizing with Children

38

void fork_wait() {
int child_status;

if (fork() == 0) {
printf("HC: hello from child\n");
exit(0);

} else {
printf("HP: hello from parent\n");
wait(&child_status);
printf("CT: child has terminated\n");

}
printf("Bye\n");

}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC
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linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps

PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6639 ttyp9    00:00:03 forks
6640 ttyp9    00:00:00 forks <defunct>
6641 ttyp9    00:00:00 ps

linux> kill 6639
[1]    Terminated
linux> ps

PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6642 ttyp9    00:00:00 ps

Example:  Zombie

v ps shows child process as 
“defunct”

v Killing parent allows child to be 
reaped by init

39

void fork7() {
if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",

getpid());
exit(0);

} else {
printf("Running Parent, PID = %d\n",

getpid());
while (1); /* Infinite loop */

}
} forks.c
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linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps

PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6676 ttyp9    00:00:06 forks
6677 ttyp9    00:00:00 ps

linux> kill 6676
linux> ps

PID TTY          TIME CMD
6585 ttyp9    00:00:00 tcsh
6678 ttyp9    00:00:00 ps

Example:

v Child process still active even 
though parent has terminated

v Must kill explicitly, or else will 
keep running indefinitely

40

void fork8() {
if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",

getpid());
while (1); /* Infinite loop */

} else {
printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

}
} forks.c

Non-terminating
Child
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Process Management Summary
v fork makes two copies of the same process  (parent & child)

§ Returns different values to the two processes
v exec* replaces current process from file (new program)

§ Two-process program:
• First fork()
• if (pid == 0) { /* child code */ } else { /* parent code */ }

§ Two different programs:
• First fork()
• if (pid == 0) { execv(…) } else { /* parent code */ }

v wait or waitpid used to synchronize parent/child execution 
and to reap child process

41
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Roadmap

42

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Virtual Memory (VM*)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection

43
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning: Virtual memory is pretty complex, 
but crucial for understanding how processes 

work and for debugging performance
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Memory as we know it so far… is virtual!
v Programs refer to virtual memory addresses

§ movq (%rdi),%rax
§ Conceptually memory is just a very large array of bytes
§ System provides private address space to each process

v Allocation:  Compiler and run-time system
§ Where different program objects should be stored
§ All allocation within single virtual address space

v But…
§ We probably don’t have 2w bytes of physical memory 
§ We certainly don’t have 2w bytes of physical memory

for every process
§ Processes should not interfere with one another

• Except in certain cases where they want to share code or data
44

0xFF······F

0x00······0



CSE351, Winter 2019L21:  Virtual Memory I

Problem 1:  How Does Everything Fit?

45

64-bit virtual addresses can address

several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers

a few gigabytes

(e.g. 8,589,934,592 bytes)

?

1 virtual address space per process, 

with many processes…

(Not to scale; physical memory would be smaller 
than the period at the end of this sentence compared 
to the virtual address space.)
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Problem 2:  Memory Management

46

Physical main memory

What goes 
where?

stack
heap

.text

.data
…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple 
processes:
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Problem 3:  How To Protect

47

Physical main memory

Process i

Process j

Problem 4:  How To Share?
Physical main memory

Process i

Process j
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How can we solve these problems?
v “Any problem in computer science can be solved by adding 

another level of indirection.” – David Wheeler, inventor of the subroutine

v Without Indirection

v With Indirection

48

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing
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Indirection
v Indirection:  The ability to reference something using a name, 

reference, or container instead of the value itself. A flexible 
mapping between a name and a thing allows changing the 
thing without notifying holders of the name.
§ Adds some work (now have to look up 2 things instead of 1)
§ But don’t have to track all uses of name/address (single source!)

v Examples:
§ Phone system: cell phone number portability
§ Domain Name Service (DNS): translation from name to IP address
§ Call centers: route calls to available operators, etc.
§ Dynamic Host Configuration Protocol (DHCP): local network address 

assignment

49
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Indirection in Virtual Memory

50

v Each process gets its own private virtual address space
v Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

Process !

mapping



CSE351, Winter 2019L21:  Virtual Memory I

Address Spaces
v Virtual address space: Set of N = 2$ virtual addr

§ {0, 1, 2, 3, …, N-1}

v Physical address space: Set of M = 2& physical addr
§ {0, 1, 2, 3, …, M-1}

v Every byte in main memory has:
§ one physical address (PA)
§ zero, one, or more virtual addresses (VAs)

51
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Mapping
v A virtual address (VA) can be mapped to either physical 

memory or disk
§ Unused VAs may not have a mapping
§ VAs from different processes may map to same location in memory/disk

52

Process 2’s Virtual 
Address Space

Physical 
Memory

Disk

Process 1’s Virtual 
Address Space

“Swap Space”
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A System Using Physical Addressing

53

v Used in “simple” systems with (usually) just one process:
§ Embedded microcontrollers in devices like cars, elevators, and digital 

picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address (PA)

Data (int/float)

8: ...

0x4
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A System Using Virtual Addressing

54

v Physical addresses are completely invisible to programs
§ Used in all modern desktops, laptops, servers, smartphones…
§ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...
CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit
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Why Virtual Memory (VM)?
v Efficient use of limited main memory (RAM)

§ Use RAM as a cache for the parts of a virtual address space
• Some non-cached parts stored on disk
• Some (unallocated) non-cached parts stored nowhere

§ Keep only active areas of virtual address space in memory
• Transfer data back and forth as needed

v Simplifies memory management for programmers
§ Each process “gets” the same full, private linear address space

v Isolates address spaces (protection)
§ One process can’t interfere with another’s memory

• They operate in different address spaces
§ User process cannot access privileged information

• Different sections of address spaces have different permissions

55



CSE351, Winter 2019L21:  Virtual Memory I

VM and the Memory Hierarchy
v Think of virtual memory as array of N = 2$ contiguous bytes

v Pages of virtual memory are usually stored in physical 
memory, but sometimes spill to disk
§ Pages are another unit of aligned memory (size is P = 2& bytes)

§ Each virtual page can be stored in any physical page (no fragmentation!)
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or: Virtual Memory as DRAM Cache for Disk
v Think of virtual memory as an array of N = 2$ contiguous 

bytes stored on a disk
v Then physical main memory is used as a cache for the 

virtual memory array
§ These “cache blocks” are called pages (size is P = 2& bytes)
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Memory Hierarchy:  Core 2 Duo
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Virtual Memory Design Consequences
v Large page size:  typically 4-8 KiB or 2-4 MiB

§ Can be up to 1 GiB (for “Big Data” apps on big computers)

§ Compared with 64-byte cache blocks

v Fully associative

§ Any virtual page can be placed in any physical page

§ Requires a “large” mapping function – different from CPU caches

v Highly sophisticated, expensive replacement algorithms in OS

§ Too complicated and open-ended to be implemented in hardware

v Write-back rather than write-through
§ Really don’t want to write to disk every time we modify something in 

memory

§ Some things may never end up on disk (e.g. stack for short-lived process)
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Why does VM work on RAM/disk?
v Avoids disk accesses because of locality

§ Same reason that L1 / L2 / L3 caches work

v The set of virtual pages that a program is “actively” 
accessing at any point in time is called its working set
§ If (working set of one process ≤ physical memory):

• Good performance for one process (after compulsory misses)

§ If (working sets of all processes > physical memory):
• Thrashing: Performance meltdown where pages are swapped 

between memory and disk continuously (CPU always waiting or 
paging)

• This is why your computer can feel faster when you add RAM
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Virtual Memory (VM)
v Overview and motivation
v VM as a tool for caching
v Address translation
v VM as a tool for memory management
v VM as a tool for memory protection
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Address Translation
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Address Translation:  Page Tables
v CPU-generated address can be split into:

§ Request is Virtual Address (VA), want Physical Address (PA)

§ Note that Physical Offset = Virtual Offset  (page-aligned)

v Use lookup table that we call the page table (PT)
§ Replace Virtual Page Number (VPN) for Physical Page 

Number (PPN) to generate Physical Address

§ Index PT using VPN:  page table entry (PTE) stores the PPN 
plus management bits (e.g. Valid, Dirty, access rights)

§ Has an entry for every virtual page – why?
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Page Table Diagram

v Page tables stored in physical memory
§ Too big to fit elsewhere – managed by MMU & OS

v How many page tables in the system?
§ One per process
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CPU

Page Table Address Translation
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Page Hit
v Page hit: VM reference is in physical memory
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Summary
v Virtual memory provides:

§ Ability to use limited memory (RAM) across multiple 
processes

§ Illusion of contiguous virtual address space for each process
§ Protection and sharing amongst processes

v Indirection via address mapping by page tables
§ Part of memory management unit and stored in memory
§ Use virtual page number as index into lookup table that 

holds physical page number, disk address, or NULL 
(unallocated page)

§ On page fault, throw exception and move page from swap 
space (disk) to main memory
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Detailed examples:
v wait() example
v waitpid() example
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wait() Example
v If multiple children completed, will take in arbitrary order
v Can use macros WIFEXITED and WEXITSTATUS to get 

information about exit status
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void fork10() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}
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waitpid():  Waiting for a Specific Process
pid_t waitpid(pid_t pid,int &status,int options)

§ suspends current process until specific process terminates
§ various options (that we won’t talk about)

70

void fork11() {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */

for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))

printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf("Child %d terminated abnormally\n", wpid);

}
}


