YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Caches Il

CSE 351 Winter 2019

Instructors:

Max Willsey I'M SORRY, WE (ANT APPROVE
Luis Ceze THIS PERMIT. YOUR LAND ISNT
Teaching Assistants: ZONED FOR GIANT-IONEY-BIN
© | CONSTRUCTION.
Britt Henderson \ ALSO, YUKE

Lukas Joswiak L tvoge A DUEK.
Josie Lee V‘/lf/@‘”&k 1 )
Wei Lin

Daniel Snitkovsky

Luis Vega

Kory Watson

lvy Yu

/

https://what-if.xkcd.com/111/



https://what-if.xkcd.com/111/

WA UNIVERSITY of WASHINGTON L18: Caches Ill

Administrivia
% Lab 3 due today (Friday)
« Lab 4 out this weekend

+» HW 4 is released, due next Friday (03/01)
+ Last day for regrade requests!

+ Extra OH today ( vy (¢ 7‘(30)
= Me —12:00-1:30pm — CSE 280
= |Lukas — 2:30pm-close — 2" floor breakout

« Cachesim! —

CSE351, Winter 2019



WA UNIVERSITY of WASHINGTON L18: Caches Ill

Making memory accesses fast!

+» Cache basics
+ Principle of locality
+» Memory hierarchies
+» Cache organization
" Direct-mapped (sets; index + tag)

= Associativity (ways)

= Replacement policy

®= Handling writes

+» Program optimizations that consider caches

CSE351, Winter 2019



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Checking for a Requested Address

+» CPU sends address request for chunk of data
= Address and requested data are not the same thing!

- Analogy: your friend # his or her phone number

L Je_x %1\7
e -
« T1O address breakw o sy
m-bit address: Tag (1) Index (s) 1 Offset (k)

' ' —
Block Number =< K

® Index field tells you where to_Jon in cache

- field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: ¢ and s sizes will change based on hash function



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Direct-Mapped Cache

Memory Cache
Block Addr Block Data Index Tag Block Data _
od 7 00 [oo] [T 7
@01 1 01 |11 1 | _Here K =48
00|10 b 10 01 L and C/K =4
oofry | 4 4 1 o ]
orfoof [ 1 1 i
0101 L ; : :
oiliod Hash function: index bits
L1 1
o g [ L. = Each memory address maps to
ofoof | | . | index in th h
olodl 7+ exactly one index in the cache
oo L L = Fast (and simpler) to find an
olaal [ 7
1100 L1 address
11f01 -
11|10 L1 1
1 [0 0

[—



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Direct-Mapped Cache Problem

Memory Cache
Block Addr Block Data Index Tag Block Data
oofod [T 1 0 [T T T
00|01 T 01 ?7? 11 1 Here K=4B
oolto [ T T 1 - 10 o —and C/K =4
00[11 Lo 11 |2 Lo ]
orfoof [ 1 1 1
0101 L :
I +» What happens if we access the
b L1 1
R0 e ] ELLE following addresses?
1olog [T T
wloy [ 1 1 = 8 24,8,24,8,...7
18 12' — o/ Conflict in cache (misses!)
| | |
11(o0] | 1 1 = Rest of cache goes unused
11(01 L .
1110 [, | + Solution?
11|11 I I |




WA UNIVERSITY of WASHINGTON

NOUl AN WN -0

Associativity

+ So we combine the two ideas:

L18: Caches Il

= Each address maps to exactly one set

= Each set can store block in more than one way

L-way:
8 sets,
1 block each

direct mapped

2-way:

4 sets,
2 blocks each

Set

4-way:
2 sets,

4 blocks each

Set

CSE351, Winter 2019

+» What if we could store data in any place in the cache?

= More complicated hardware = more power consumed, slower

8-way:
1 set,
8 blocks

full_y_ associative7



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Note: The textbook
uses “b” for offset bits

Cache Organization (3)

= Associativity (E): # of ways for each set .

" Such a cache is called an “E-way set associative cache”//
= We now mdex into cache sets, of which there are S =|C//K/E

= Use lowes logz C/K/E) = s bits of block address = &« /—

- Direct-mapped: E=1,s0s= logz (C/K) as we saw previously

- Fully associative: E = C/K, sogi%bits

Used for tag comparison Selects the set  Selects the byte from block
I I I
Tag (1) \iﬁ Index (s) “ Offset (k)
—
_ oo — Increasing associativity
Decreasing assouatlwtyL—
\ : —| Fully associative
Direct mapped NMonly one set)

(only one way) ‘e

te :



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

( :L/ #[olock size: 168

capacity: 8 blocks
address: 16 bits

+» Where would data from address‘0x1 833 be placed?

= Binary: Ob 0001 1000 001?II 0011
gjrgs‘tk

=m-s-k s=log,(C/K/E) k=log,(K)

Example Placement

m-bit address: Tag (1) Index (s) Offset (k)
c=1 s5=3 =N 4 E=Y
s=7 s=7 s=7?
Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
: 0
0
2 1
3 v/
4 v
5 2 . v
6 ; V4 <
7 \/ (/




YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Block Replacement

+ Any empty block in the correct set may be used to store block
+ If there are no empty blocks, which one should we replace?

®= No choice for direct-mapped caches

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

-  —— —

Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data

: 0

0
2 1
3 v

v

‘5‘ 2 :
6 1 il

>
7 3 v

10



WA UNIVERSITY of WASHINGTON L18: Caches Ill

CSE351, Winter 2019

Peer Instruction Question

+ We have a cache of size 2 KiB with block size of, 128 B,
If our cache has,2 sets, what s its associativity?

A. = ph o= 2

B. 4 7 V=g bleets

(€. 8 ~voey | -

D. 16 -

E. We'reJost... mw/ A j
y/‘*g A

+ If addresses are 16 bits wide, how wide is the Tag
field?

11



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

General Cache Organization (S, E, K)
et =

E = blocks/lines per set
A

- N
/
(
[ 000 j\
_ _ (block plus
XX R management bits)
S = # sets < eoece

= 7S

0 090
\.

Cache size:
C = KXEXS data bytes

G L\/_l Tag OJ1f2] eeeee k-1 (doesn’t include V or Tag)

= ]
7 / — _
valid bit v

K = bytes per block 1



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Notation Review

+» We just introduced a lot of new variable names!

= Please be mindful of block size notation when you look at
past exam questions or are watching videos

™ arable | This Quarter | Formulas
Block size K (B in book)
C

Cache size
M=2"om =log, M

S=2os=1log,S
K=2"ck=1log, K

Associativity
Number of Sets

E
S
Address space M
m

. C = KXEXS
Address width s = log,(C/K/E)
Tag field width m=.+s+k

Index field width S

Offset field width k Sb in book)

13



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Example Cache Parameters Problem
A

i [ 2 b
+ 4 KiB address space, 125 cycles)to go to memory.

Fill in the following table:

Cache Size 256 B - C W
Block Size 32B = K
Associativity 2-way - E
Hit Time 3 cycles
Miss Rate 120% |
Tag Bits P
Index Bits 2
Offset Bits 5
AMAT 2§ E>+ . \2334
\

14



WA UNIVERSITY of WASHINGTON

L18: Caches Il

Cache Read

S = # sets <
=25

E = blocks/lines per set

CSE351, Winter 2019

1) Locate set — (~Os<

2) “Check if any line in set
is valid and has
matching tag: hit
_-——— M

3) Locate data starting

at offset

Address of byte in memory:
B bits s bits | k bits
tag set block
index offset

AL
-
00
00
00
[ 3N B )
00
Y tag OJ1]|2] ecccee K-1
_ . N— __J
valid bit v

K = bytes per block

data begins at this offset

15



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Block Size K =,8 B,

'~ o
17‘B / O'Q%zJ\\
4 — Addressof int:/ /
v tag ol1l213l2]l5]6]|7 : =
lets 0..01 | 100
Y
v tag ol1l213l2]l5]6]|7 :
find set
S=2° sets<
v tag ol1l213l2]l5]6]|7
o000
v tag ol1l213l2]l5]6]|7
\.

16



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
B bits 0..01 | 100

valid? + match?: yes = hit

v tag O1112]|3}14]51]6]|7

block offset

17



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
@bits | 0..01 |,100

valid? + match?: yes = hit

v tag ol1]2|3|4]|5]6]7
block offset
int (4 B)is here
(48) This is why we
want alighment!

=

No match? Then old line gets evicted and replaced

18



WA UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Winter 2019

Example: Set-Associative Cache (E = 2)

2.
Address of short int:
B bits 0..01 | 100

2-way: Two lines per set
Block Size K =8 B

v] | g | [olaf2]3]als]el7]| v | te | [olz]2f3]a]s]6]7
v | tag | lo]al2]3la]sle] 7| lv] | e | lol1l2]3]2ls5]6]7 find set
v] | g | lolaf2]3]lalslel7]| v | tee | lol1]2f3]a]s]6]7

o000
v | g | lola]203la]slel7)| Hv] | tee | lola]203]a]5]6]7

19



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

@ bits 0..01 | 100

compare both

valid? + | match: yes = hit

v] Ltag | [o]af2]3]4]s]6]7 vl tag lol1]2l3]a]ls]s]7 || =

block offset

20



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K = 8 B Address of short int:

@ bits 0..01 | 100

compare both 7
valid? + | match: yes = hit
ﬁ"
‘v(ltag ol1]2]314]5]6]7 v tag ol1]2]3]4]5]6]7

block offset

short int (2 B)is here

No match?
* Onelinein setis selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

21



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Types of Cache Misses: 3 C’s!

= Compulsory (cold) miss

® (Qccurs on first access to a block

« Conflict miss

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot & 2, > Y

- e.g. referencing bIocst,_S,/O,SJ ... could miss every time

= Direct-mapped caches have more conflict misses than
E-way set-associative (where E > 1)

= Note: Fully-associative only has Compulsory and Cagacity misses

« Capacity miss

= Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

22



L18: Caches Il CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON

Example Code Analysis Problem

A/ /L)‘/:ﬁf K A(@akj
» Assuming the cache starts cold (all blocks invalid) and

sum is stored in a register, calculate the miss rate:
2568, k=328 E=2 =/ <2
k-5 =

" m= 12 bits?£=

#define SIZE 8
_ Jer

{Tong|,ar[SIZE] [SIZE], sum = 0; // ¢ar50x800
(UxoU0, =
i < SIZE; i++)

O#S(‘T{_

for (int 1 = 0;
for (int 7 = 0; J < SIZE; j++)
sum += ar[i][]]; -
A [ OO Yo le o) CTCVCDC>ﬂZ§—<;
& rooe Opele oo dH
(OO OO | &@@C;H
H

;// Q\/\(%EL\ NN D O r (;pcjiij

% Cee 2P 202 &M
|
Y



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

What about writes?

‘0

+ Multiple copies of data exist:

- L1 L2, p055|bly L3, main memory
X What to do on a write-hit?

P e —
= Write-through: write immediately to next level

‘0

= Write-back: defer write to next level until line is evicted (replaced)

Must track which cache lines have been modified (“dirty bit”)

What to do on a write-miss?

= Write-allocate: (“fetch on write”) load into cache, update line in cache

0’0

- Good if more writes or reads to the location follow
= No-write-all . (“write around”) just write immediately to memory

0’0

Typical caches:
" (Write-back + Write—allocate(, usually

= Write-throu -write-allocate, occasionally

24



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

Contents of memory stored at address G

7
Cache G OxBEEF 0] [ dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

Memor F 0<CAFE In this example we are sort of
y 2 ignoring block offsets. Here a block
G OxBEEF holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 25




YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

mov OxXFACE, F

Cache G OxBEEF 0] [ dirty bit
Memory F OxCAFE
G OxBEEF

26



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

mov OxXFACE, F

Cache F O0xCAFE 01l < dirty bit

Step 1: Bring F into cache

Memory F OxCAFE

G OxBEEF

27



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

mov OxXFACE, F

Cache F OxFACE 1] [<— dirty bit

Step 2: Write OxFACE
to cache only and set

dirty bit

Memory F OxCAFE

G OxBEEF

28



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

mov OxXFACE, F mov OXFEED, F
Cache F OxFACE 1| fe— dirty bit
Write hit!
Write OXFEED to
cache only
Memory F OxCAFE

G OxBEEF

29



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

mov OxXFACE, F mov OXFEED, F mov G, %rax
Cache F OXFEED 1] [<— dirty bit
Memory F OxCAFE
G OxBEEF

30



YA UNIVERSITY of WASHINGTON L18: Caches Ill CSE351, Winter 2019

Write-back, write-allocate example

mov OxXFACE, F mov OXFEED, F mov G, %rax

Cache G OxBEEF 0] [ dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so

Memory F OXFEED we can copy it into $rax

G OxBEEF

31



WA UNIVERSITY of WASHINGTON L18: Caches Il CSE351, Winter 2019

Peer Instruction Question

+» Which of the following cache statements is FALSE?

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

32



