
CSE351, Winter 2019L18: Caches III

Caches III
CSE 351 Winter 2019

https://what-if.xkcd.com/111/

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants:
Britt Henderson
Lukas Joswiak
Josie Lee
Wei Lin
Daniel Snitkovsky
Luis Vega
Kory Watson
Ivy Yu

https://what-if.xkcd.com/111/

CSE351, Winter 2019L18: Caches III

Administrivia
v Lab 3 due today (Friday)

v Lab 4 out this weekend

v HW 4 is released, due next Friday (03/01)

v Last day for regrade requests!

v Extra OH today

§ Me – 12:00-1:30pm – CSE 280

§ Lukas – 2:30pm-close – 2nd floor breakout

v Cache sim!
2

CSE351, Winter 2019L18: Caches III

Making memory accesses fast!
v Cache basics
v Principle of locality
v Memory hierarchies
v Cache organization

§ Direct-mapped (sets; index + tag)
§ Associativity (ways)
§ Replacement policy
§ Handling writes

v Program optimizations that consider caches

3

CSE351, Winter 2019L18: Caches III

Checking for a Requested Address
v CPU sends address request for chunk of data

§ Address and requested data are not the same thing!
• Analogy: your friend ≠ his or her phone number

v TIO address breakdown:

§ Index field tells you where to look in cache

§ Tag field lets you check that data is the block you want

§ Offset field selects specified start byte within block

§ Note: ! and " sizes will change based on hash function
4

Tag (!) Offset (#)$-bit address:

Block Number

Index (")

CSE351, Winter 2019L18: Caches III

Direct-Mapped Cache

v Hash function: index bits
§ Each memory address maps to
exactly one index in the cache

§ Fast (and simpler) to find an
address

5

Block Addr Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

Here ! = 4 B
and "/! = 4

CSE351, Winter 2019L18: Caches III

Direct-Mapped Cache Problem

v What happens if we access the
following addresses?
§ 8, 24, 8, 24, 8, …?
§ Conflict in cache (misses!)
§ Rest of cache goes unused

v Solution?

6

Block Addr Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

Here ! = 4 B
and "/! = 4

CSE351, Winter 2019L18: Caches III

Associativity
v What if we could store data in any place in the cache?

§ More complicated hardware = more power consumed, slower

v So we combine the two ideas:
§ Each address maps to exactly one set
§ Each set can store block in more than one way

7

0
1
2
3
4
5
6
7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct mapped fully associative

CSE351, Winter 2019L18: Caches III

Cache Organization (3)
v Associativity (!): # of ways for each set

§ Such a cache is called an “!-way set associative cache”
§ We now index into cache sets, of which there are " = $/&/!
§ Use lowest log* $/&/! = + bits of block address

• Direct-mapped: ! = 1, so + = log* $/& as we saw previously
• Fully associative: ! = $/&, so + = 0 bits

8

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (,) Index (+) Offset (-)

Note: The textbook
uses “b” for offset bits

CSE351, Winter 2019L18: Caches III

Example Placement
v Where would data from address 0x1833 be placed?
§ Binary: 0b 0001 1000 0011 0011

9

! = ?

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (") Offset (#)$-bit address: Index (!)

! = log()/+/, # = log(+" = $–!–#

! = ? ! = ?

CSE351, Winter 2019L18: Caches III

Block Replacement
v Any empty block in the correct set may be used to store block
v If there are no empty blocks, which one should we replace?

§ No choice for direct-mapped caches
§ Caches typically use something close to least recently used (LRU)

(hardware usually implements “not most recently used”)

10

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

CSE351, Winter 2019L18: Caches III

Peer Instruction Question
v We have a cache of size 2 KiB with block size of 128 B.

If our cache has 2 sets, what is its associativity?
A. 2
B. 4
C. 8
D. 16
E. We’re lost…

v If addresses are 16 bits wide, how wide is the Tag
field?

11

CSE351, Winter 2019L18: Caches III

General Cache Organization (!, ", #)

12

" = blocks/lines per set

! = # sets
= 2%

set

“line” (block plus
management bits)

0 1 2 K-1TagV

valid bit # = bytes per block

Cache size:
& = #×"×! data bytes
(doesn’t include V or Tag)

CSE351, Winter 2019L18: Caches III

Notation Review
v We just introduced a lot of new variable names!

§ Please be mindful of block size notation when you look at
past exam questions or are watching videos

13

Variable This Quarter Formulas
Block size ! (# in	book)

+ = 2. ↔0 = log3 +
4 = 25 ↔ 5 = log3 4
! = 26 ↔ 6 = log3 !

7 = !×9×4
5 = log3 7/!/9
; = < + 5 + 6

Cache size 7
Associativity 9

Number of Sets 4
Address space +
Address width ;
Tag field width <

Index field width 5
Offset field width 6 (> in	book)

CSE351, Winter 2019L18: Caches III

Example Cache Parameters Problem
v 4 KiB address space, 125 cycles to go to memory.

Fill in the following table:

14

Cache Size 256 B
Block Size 32 B

Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits

Index Bits
Offset Bits

AMAT

CSE351, Winter 2019L18: Caches III

Cache Read

15

0 1 2 K-1tagv

! bits " bits # bits
Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has
matching tag: hit

3) Locate data starting
at offset

valid bit

$ = # sets
= 2"

& = blocks/lines per set

' = bytes per block

CSE351, Winter 2019L18: Caches III

Example: Direct-Mapped Cache (! = 1)

16

Direct-mapped: One line per set
Block Size " = 8 B

bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

$ = 2& sets

CSE351, Winter 2019L18: Caches III

Example: Direct-Mapped Cache (! = 1)

17

" bits 0…01 100
Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

block offset

Direct-mapped: One line per set
Block Size # = 8 B

CSE351, Winter 2019L18: Caches III

Example: Direct-Mapped Cache (! = 1)

18

" bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid? +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we
want alignment!

Direct-mapped: One line per set
Block Size # = 8 B

CSE351, Winter 2019L18: Caches III

Example: Set-Associative Cache (! = 2)

19

" bits 0…01 100
Address of short int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way: Two lines per set
Block Size # = 8 B

CSE351, Winter 2019L18: Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (! = 2)

20

" bits 0…01 100
compare both

valid? + match: yes = hit

block offset

tag

2-way: Two lines per set
Block Size # = 8 B Address of short int:

CSE351, Winter 2019L18: Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example: Set-Associative Cache (! = 2)

21

" bits 0…01 100

valid? + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way: Two lines per set
Block Size # = 8 B

CSE351, Winter 2019L18: Caches III

Types of Cache Misses: 3 C’s!
v Compulsory (cold) miss

§ Occurs on first access to a block

v Conflict miss
§ Conflict misses occur when the cache is large enough, but multiple data

objects all map to the same slot
• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

§ Direct-mapped caches have more conflict misses than
!-way set-associative (where ! > 1)

§ Note: Fully-associative only has Compulsory and Capacity misses

v Capacity miss
§ Occurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

22

CSE351, Winter 2019L18: Caches III

Example Code Analysis Problem
v Assuming the cache starts cold (all blocks invalid) and
sum is stored in a register, calculate the miss rate:
§ ! = 12 bits, " = 256 B, # = 32 B, $ = 2
#define SIZE 8
long ar[SIZE][SIZE], sum = 0; // &ar=0x800
for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)
sum += ar[i][j];

23

CSE351, Winter 2019L18: Caches III

What about writes?
v Multiple copies of data exist:

§ L1, L2, possibly L3, main memory

v What to do on a write-hit?
§ Write-through: write immediately to next level
§ Write-back: defer write to next level until line is evicted (replaced)

• Must track which cache lines have been modified (“dirty bit”)

v What to do on a write-miss?
§ Write-allocate: (“fetch on write”) load into cache, update line in cache

• Good if more writes or reads to the location follow

§ No-write-allocate: (“write around”) just write immediately to memory

v Typical caches:
§ Write-back + Write-allocate, usually
§ Write-through + No-write-allocate, occasionally

24

CSE351, Winter 2019L18: Caches III

Write-back, write-allocate example

25

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
ignoring block offsets. Here a block
holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache.

Contents of memory stored at address G

CSE351, Winter 2019L18: Caches III

Write-back, write-allocate example

26

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

mov 0xFACE, F

dirty bit

CSE351, Winter 2019L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

27

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xCAFE 0

Step 1: Bring F into cache

mov 0xFACE, F

CSE351, Winter 2019L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

28

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xFACE 1

Step 2: Write 0xFACE
to cache only and set
dirty bit

mov 0xFACE, F

CSE351, Winter 2019L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

29

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov 0xFEED, F

dirty bit0xFACE 1

Write hit!
Write 0xFEED to

cache only

mov 0xFACE, F

CSE351, Winter 2019L18: Caches III

0xBEEFU 0

Write-back, write-allocate example

30

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov G, %rax

dirty bit0xFEED 1

mov 0xFEED, Fmov 0xFACE, F

CSE351, Winter 2019L18: Caches III

Write-back, write-allocate example

31

0xBEEFCache

Memory

G

0xFEED

0xBEEF

0

F

G

dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so
we can copy it into %rax

mov G, %raxmov 0xFEED, Fmov 0xFACE, F

CSE351, Winter 2019L18: Caches III

Peer Instruction Question
v Which of the following cache statements is FALSE?

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We’re lost…

32

