
CSE351, Winter 2019L17: Caches II

Caches II
CSE 351 Winter 2019

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants:
Britt Henderson
Lukas Joswiak
Josie Lee
Wei Lin

Daniel Snitkovsky
Luis Vega
Kory Watson
Ivy Yu

CSE351, Winter 2019L17: Caches II

Administrivia
v Lab 3 due Friday (02/22)

v Mid-Quarter Survey Feedback
§ Pace is “too slow” to “too fast”
§ Use office hours!
§ I’ll try to post ink when iPad doesn’t eat it

2

CSE351, Winter 2019L17: Caches II

Midterm
v Grades

§ Coming out soon
§ Did really well! (mean: ~86)
§ Final will be harder

v Regrade requests
v Common things

§ “function”, not “method”
§ tail recursion
§ What is a stack frame?

3

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7+

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

CSE351, Winter 2019L17: Caches II

Last time
v Caching in general

§ Successively higher levels contain “most used” data from
lower levels

§ Exploits temporal and spatial locality
§ Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

v Cache Performance
§ Ideal case: found in cache (hit)

§ Bad case: not found in cache (miss), search in next level

§ Average Memory Access Time (AMAT) = HT + MR × MP
• Hurt by Miss Rate and Miss Penalty

4

CSE351, Winter 2019L17: Caches II

Can we have more than one cache?
v Why would we want to do that?

§ Avoid going to memory!
v Typical performance numbers:

§ Miss Rate
• L1 MR = 3-10%
• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

§ Hit Time
• L1 HT = 4 clock cycles
• L2 HT = 10 clock cycles

§ Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory
• Trend: increasing!

5

CSE351, Winter 2019L17: Caches II

An Example Memory Hierarchy

6

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Winter 2019L17: Caches II

Memory Hierarchies
v Some fundamental and enduring properties of

hardware and software systems:
§ Faster = smaller = more expensive

§ Slower = bigger = cheaper
§ The gaps between memory technology speeds are widening

• True for: registers ↔ cache, cache ↔ DRAM, DRAM ↔ disk, etc.

§ Well-written programs tend to exhibit good locality

v These properties complement each other beautifully
§ They suggest an approach for organizing memory and

storage systems known as a memory hierarchy
• For each level k, the faster, smaller device at level k serves as a cache

for the larger, slower device at level k+1 7

CSE351, Winter 2019L17: Caches II

An Example Memory Hierarchy

8

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk blocks
retrieved from local disks

off-chip L2
cache (SRAM)

L1 cache holds cache lines retrieved from L2 cache

CPU registers hold words retrieved from L1 cache

L2 cache holds cache lines retrieved
from main memory

Smaller,
faster,
costlier
per byte

CSE351, Winter 2019L17: Caches II

An Example Memory Hierarchy

9

registers

on-chip L1

cache (SRAM)

main memory

(DRAM)

local secondary storage

(local disks)

Larger,

slower,

cheaper

per byte

remote secondary storage

(distributed file systems, web servers)

off-chip L2

cache (SRAM)

explicitly program-controlled

(e.g. refer to exactly %rax, %rbx)

Smaller,

faster,

costlier

per byte

program sees “memory”;

hardware manages caching
transparently

CSE351, Winter 2019L17: Caches II

Intel Core i7 Cache Hierarchy

10

Regs

L1 D$ L1 I$

L2 unified cache

Core 0

Regs

L1 D$ L1 I$

L2 unified cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

CSE351, Winter 2019L17: Caches II

Making memory accesses fast!
v Cache basics
v Principle of locality
v Memory hierarchies
v Cache organization

§ Direct-mapped (sets; index + tag)
§ Associativity (ways)
§ Replacement policy
§ Handling writes

v Program optimizations that consider caches

11

CSE351, Winter 2019L17: Caches II

Cache Organization (1)
v Block Size (!): unit of transfer between $ and Mem

§ Given in bytes and always a power of 2 (e.g. 64 B)
§ Blocks consist of adjacent bytes (differ in address by 1)

• Spatial locality!

12

Note: The textbook
uses “B” for block size

CSE351, Winter 2019L17: Caches II

Cache Organization (1)
v Block Size (!): unit of transfer between $ and Mem

§ Given in bytes and always a power of 2 (e.g. 64 B)

§ Blocks consist of adjacent bytes (differ in address by 1)
• Spatial locality!

v Offset field
§ Low-order log& ! = (bits of address tell you which byte

within a block
• (address) mod 2* = + lowest bits of address

§ (address) modulo (# of bytes in a block)

13

Block Number Block Offset,-bit address:
(refers to byte in memory)

(bits,− (bits

Note: The textbook
uses “b” for offset bits

CSE351, Winter 2019L17: Caches II

Peer Instruction Question
v If we have 6-bit addresses and block size ! = 4 B,

which block and byte does 0x15 refer to?

Block Num Block Offset
A. 1 1
B. 1 5
C. 5 1
D. 5 5
E. We’re lost…

14

CSE351, Winter 2019L17: Caches II

Cache Organization (2)
v Cache Size (!): amount of data the $ can store

§ Cache can only hold so much data (subset of next level)
§ Given in bytes (!) or number of blocks (!/$)
§ Example: ! = 32 KiB = 512 blocks if using 64-B blocks

v Where should data go in the cache?
§ We need a mapping from memory addresses to specific

locations in the cache to make checking the cache for an
address fast

v What is a data structure that provides fast lookup?
§ Hash table!

15

CSE351, Winter 2019L17: Caches II

Review: Hash Tables for Fast Lookup

16

0
1
2
3
4
5
6
7
8
9

Insert:
5
27
34
102
119

Apply hash function to map data
to “buckets”

CSE351, Winter 2019L17: Caches II

Place Data in Cache by Hashing Address

v Map to cache index from block
address
§ Use next log$ %/' =) bits
§ (block address) mod (# blocks in

cache)
§ How many bits do I need to

specify an index in the cache
17

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here ' = 4 B
and %/' = 4

CSE351, Winter 2019L17: Caches II

Place Data in Cache by Hashing Address

v Map to cache index from block
address
§ Lets adjacent blocks fit in cache

simultaneously!
• Consecutive blocks go in consecutive

cache indices

18

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here ! = 4 B
and "/! = 4

CSE351, Winter 2019L17: Caches II

Practice Question
v 6-bit addresses, block size ! = 4 B, and our cache

holds " = 4 blocks.
v A request for address 0x2A results in a cache miss.

Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

19

CSE351, Winter 2019L17: Caches II

Place Data in Cache by Hashing Address

v Collision!
§ Different index, same address
§ Don’t want to mix things up!
§ Solution?

20

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

Here ! = 4 B
and "/! = 4

CSE351, Winter 2019L17: Caches II

Tags Differentiate Blocks in Same Index

v Tag = rest of address bits
§ ! bits = "− $− %
§ Check this during a cache lookup

21

Block Addr Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Tag Block Data
00 00
01
10 01
11 01

Here & = 4 B
and '/& = 4

CSE351, Winter 2019L17: Caches II

Checking for a Requested Address
v CPU sends address request for chunk of data

§ Address and requested data are not the same thing!
• Analogy: your friend ≠ his or her phone number

v TIO address breakdown:

§ Index field tells you where to look in cache

§ Tag field lets you check that data is the block you want

§ Offset field selects specified start byte within block

§ Note: ! and " sizes will change based on hash function
22

Tag (!) Offset (#)$-bit address:

Block Number

Index (")

CSE351, Winter 2019L17: Caches II

Cache Puzzle
v Based on the following behavior, which of the

following block sizes is NOT possible for our cache?
§ Cache starts empty, also known as a cold cache
§ Access (addr: hit/miss) stream:

• (14: miss), (15: hit), (16: miss)

A. 4 bytes
B. 8 bytes
C. 16 bytes
D. 32 bytes
E. We’re lost…

23

CSE351, Winter 2019L17: Caches II

Direct-Mapped Cache

v Hash function: just index bits
§ Each memory address maps to
exactly one index in the cache

§ Fast (and simpler) to find an
address

24

Block Addr Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

Here ! = 4 B
and "/! = 4

CSE351, Winter 2019L17: Caches II

Direct-Mapped Cache Problem

v What happens if we access the
following addresses?
§ 8, 25, 8, 25, 8, …?
§ Conflict in cache (misses!)
§ Rest of cache goes unused

v Solution?

25

Block Addr Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

Here ! = 4 B
and "/! = 4

CSE351, Winter 2019L17: Caches II

Associativity
v What if we could store data in any place in the cache?

§ More complicated hardware = more power consumed, slower

v So we combine the two ideas:
§ Each address maps to exactly one set
§ Each set can store block in more than one way

26

0
1
2
3
4
5
6
7

0

1

2

3

Set

0

1

Set

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

Set

8-way:
1 set,

8 blocks

direct mapped fully associative

