WA UNIVERSITY of WASHINGTON

L17: Caches I

CSE351, Winter 2019

Caches Il

CSE 351 Winter 2019

Instructors: Teaching Assistants:
Max Willsey Britt Henderson Daniel Snitkovsky
Luis Ceze Lukas Joswiak Luis Vega
Josie Lee Kory Watson
Wei Lin lvy Yu
WHATS Tdi5? | HUH? T ALWAYS THOUGHT THE | HOW? YOURE ON | | SHOULD THE CORDBE | | WHAT IF SOMEONE TRIFS ON 177
CLOUD wAS A HUGE, AMORPHOUS A CPBLE MODEM. | | STRETCHED ACROSS WHO WOULD WANT TO DO THAT?
NETWORK, OF SERVERS SOMEWHERE. THE ROOM LIKE THIS? (IT SOUNDS UNPLERSANT.
OF CoURE. IT | | UH. SoMETMES PEORE \
THE CLOUD. YERH, BUT EVERYONE BYS |2/ THERES A LOT HAS TOREACH | | DO STUFF BY ACCIDENT.
SERVER TiME FRoM EVERIONE | OF CACHING. THE SERVER, T DONT THINK
. ELSE. IN THE END, THEYRE AND THE SERVER s T KNOW ANYBODY
z ALL GETTING [T HERE, 1S OVER THERE LIKE THAT,

|
O

\
=

O O)

WA UNIVERSITY of WASHINGTON L17: Caches Il

Administrivia
+» Lab 3 due Friday (02/22)

+» Mid-Quarter Survey Feedback

= Paceis “too slow” to “too fast”
= Use office hours!

" I'll try to post ink when iPad doesn’t eat it

CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON L17: Caches Il

Midterm ‘
«» Qrades CaIIer<
: 5? In¢ rbp Frame
= Coming out soon e —
. Arguments
= Did really well! (mean: ~86) \Z =4

Frame pointer = b [Return Addr

8 rop—{Lors. |j Old $bp)

" Final will be harder

+» Regrade requests (Optional)]
. Saved
%~ Common things Registers
o H V4 o ’) +
" “function”, not “method’ Local
Variables

= \What is a stack frame? Argument

Stack pointer Build
% rsp—— |_(Optional)

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Last time

+ Caching in general

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatiallocality (

" Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

« Cache Performance

= |deal case: found in cache (hit)
= Bad case: not found in cache (miss), search in next level

" Average Memory Access Time (AMAT) = HT + MR X MP
- Hurt by Miss Rate and Miss Penalty

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+» Typical performance numbers:
= Miss Rate
+ L1 MR =3-10%
- L2 MR = Quite small (e.g. <_1_%), depending on parameters, etc.
= Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty
« P =50-200 cycles for missing in L2 & going to main memory

- Trend: increasing!

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

An Example Memory Hierarchy

£

1ns Qﬂ'&hip L1
Smaller, : cache (SRAM)
faster,
costlier .
or bvte 5-10 ns off-chip L2
PEr by cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper 54 000 s
) £SSI 31 days
per byte local secondary storage —
({w JT;//EE’ (local disks)
1-150 ms remote secondary storage
e

(distributed file systems, web servers)

WA UNIVERSITY of WASHINGTON L17: Caches Il

CSE351, Winter 2019

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

Faster = smaller = more expensive

= Slower = bigger = cheaper _
" The gaps between memory technology speeds are widening

« True for: reéisters &> cache, cache €& DRAM, DRAM & disk, etc.
Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully

" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

e —————

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

An Example Memory Hierarchy

A

Smaller,
faster,
costlier
per byte

Larger,
slower,
cheaper
per byte

registers CPU registers hold words retrieved from L1 cache

—_——

on-chip L1

cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved

from main memory
———

main memory

(DRAM) Mainmemory holds disk blocks
retrieved from local disks

=\ Local disks hold files
__.5) .
retrieved from disks on
remote network servers

remote secondary storage - —
(distributed file systems, web servers)

(local disks)
‘lvbul

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

An Example Memory Hierarchy

A
explicitly grogram-controlled
registers (e.g. refer to exactly %rax, %rbx)
on-chip L1
?mt“‘"e" cache (SRAM) program sees “memory”’;
aster, :
costlier hardware manages caching
off-chip L2 .
ransparenti
per byte cache (SRAM) - P y
Larger main memory
slower, (DRAM)
cheaper
per byte local secondary storage
(local disks)
remote secondary storage
(distributed file systems, web servers)
\ 4

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Intel Core i7 Cache Hierarchy

Processor package —

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

1D ‘@B L1DS || L11S

- L2 unified cache:
\ (}2 unified cache L2 unified cache 256 KiB, 8-way,

Access: 11 cycles

' L3 unified cache — \ L3 unified cache:
(shared by all cores) B 8 MiB, 16-way,
ol e t __________________________________ Access: 30-40 cycles
$=600 e,
10

Main memory

WA UNIVERSITY of WASHINGTON L17: Caches Il

Making memory accesses fast!

+ Cache basics
» Principle of locality
» Memory hierarchies

» Cache organization

" Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

®= Handling writes

)

*

Program optimizations that consider caches

CSE351, Winter 2019

11

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Note: The textbook
uses “B” for block size

Cache Organization (1)

« Block Size (K): unit of transfer between $ and Mem

—_—

= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

12

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

« Offset field
" Low-order log,(K) = k bits of address tell you which

within a block /ﬂ Rlocte s
- (address) mod 2" = n lowest bits of address / ﬁ)

= (address) modulo (# of bytes in a block)

& m — k bits I bits?

Z7m-bit address: Block Number ;! Block Offset li —

(refers to byte in memory)
i | 7

13

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Peer Instruction Question

A “«/OjLK = X

+ |f we have 6-bit addresses and block size K =4 B,

which block and byte does&(_lgrefer to?

ol O\
Block Num Block Offset Ob L o
é]oda \m.kkr O%K‘IL

5 1

—

IES BTN

A —
B. 1
c. |5]
D. 5
E. We're lost...

14

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Cache Organization (2) bt
/A }r £C
(/
« Cache Size (C): amount of data the§ can store
= Cache can only hold so much data (subset of next level)
= Given in bytes (g) or number of blocks (C/K)

" Example: £ =32 KiB =512 blocks if using 64-B blocks

+» Where should data go in the cache?

= We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
= Hash table!

15

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Review: Hash Tables for Fast Lookup

Insert:
5

200 —v
34—
102
119

w N - O

> 9

Apply hash function to map data
to “buckets”

16

WA UNIVERSITY of WASHINGTON

L17: Caches I CSE351, Winter 2019

Place Data
L ool

/

Memory

Block Num Block Data

—

in Cache by Hashing Address

D)

Cache

Index Block Data _

>00 L

01 T Here K=48B

10 I 11 — and =4

N C7K =4

T I
160 Uk,

Map to cache index from block
address

L Useﬂei’c/logz(C/lK) = s bits

= (block address) mod (# blocks in
cache)

= How many bits do | need to
specify an index in the cache

17

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Place Data in Cache b shlng Address

e

Memory [Cache
Block Addr Block Data Index Block Data
oo oo [7 -
0001 L1 Y |- /701 111 Here K=4B
OOL Zs -~ 10 ol —and C/K =4
ool [T 1 [_
[o1bo [11 1
01001 L)
otho [Map to cache index from block
] LB address
1000 L _ .
wop1 |y 1 " |Letsadjacent blocks fit in cache
R B simultaneously!
1011
1100 : : : » (Consecutive blocks go in consecutive
1161 1 1 cache indices
11010 L
11011 T

18

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Practice Question

-

+» 6-bit addresses, block size 'K =4 B, and our cache
holds .§ =4 blocks.

+» A request for address Ox2A results in a cache miss.
Which index does this block get loaded into and
which 3 other s are loaded along with it?

OAZ/[\ — OL [OOIO

L o trse /- RASE Z
[O(0 60 —

& |

19

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Place Data in Cache by Hashing Address

Nl w pes ko=t

Memory Cache
Block/Addr Block Data Index Block Data
OCJOO T 1 »00 T 1 =
0001 ' 01 11 1 __HereK=4B
0010 L 10 L and C/K =4
00\11 L1 11 Lo |
0100 B
i | R Collision!
< o110 [y 4 copl O, e s
0111 LI = Different index, same address
1000 L . .
1001 | 1 1 = Don’t want to mix things up!
1010 L :
B ——t = Solution?
1011 Lo
1100 o1
1101 | | |
1110 L
11011 T

20

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Tags Differentiate Blocks in Same Index

Memory Cache
Block Addr Block Data Index Tag Block Data
| | | - | | | =
L L L >00) 00 L L L
I 01 11| | Here K =48
L 10 01 L and C/K =4
L1 1 11 01 L1 1 _
I 1 1
I 1 1

ag = rest of address bits
= [bits=m—s—Kk

= Check this during a cache lookup

(‘J@j)& 21

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Checking for a Requested Address

+» CPU sends address request for chunk of data
= Address and requested data are not the same thing!

- Analogy: your friend # his or her phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\ J
Y
Block Number

* Index field tells you where to look in cache
- field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: ¢ and s sizes will change based on hash function
22

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Cache Puzzle

+» Based on the following behavior, which of the
following block sizes is NOT possible for our cache?

= Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (14: miss), (15: hit), (16: miss)

8 bytes

16 bytes

. 32 bytes
We're lost...

m O 0O W >

23

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Direct-Mapped Cache

Memory Cache
Block Addr Block Data Index Tag Block Data _
oofoo [, , | »00 |00 Ly
00|01 11| 01 11 11| | Here K =48
00|10l L 10 01 L and C/K =4
oof11f | , , 11 |o1 L1 |
o100 | 1 1 i
01{01 L ; ; : :
oalrol Hash function: just index bits
L1 1
onda 1 1 |1 = Each memory address maps to
10{00| L | index in th h
1olo1 —— exactly one index In the cache
oo L L " Fast (and simpler) to find an
10/11 L
loo address
11{01 L
11|11 T

24

WA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2019

Direct-Mapped Cache Problem

Memory Cache
Block Addr Block Data Index Tag Block Data
oofod] [T 0 [T T T "
00|01 T 01 ?7? 11 1 Here K=4B
oolrof [T T 1 10 o —and C/K =4
00|11 Lo 11 |2 Lo]
otfoof [1 1 1
i B > What h if th
orfe| [at happens if we access the
o1y | 1+ v following addresses?
1000 |,
wloy [1 1 = 8 25,8,25,8,...7
1812' — = Conflict in cache (misses!)
]]]
11(o0] | 1 1 = Rest of cache goes unused
11(01 L .
1110 [, | + Solution?
1)1y [0 o1

25

WA UNIVERSITY of WASHINGTON

NOUl AN WN -0

Associativity

L17: Caches I

CSE351, Winter 2019

+» What if we could store data in any place in the cache?

= More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

= Each address maps to exactly one set

= Each set can store block in more than one way

1-way:
8 sets,
1 block each

direct mapped

Set

2-way:
4 sets,
2 blocks each

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks

fully associative2 6

