
CSE351, Winter 2019L14: Structs & Alignment

Structs & Alignment
CSE 351 Winter 2019

http://xkcd.com/163/

Instructors:
Max Willsey

Luis Ceze

Teaching Assistants:
Britt Henderson

Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky

Luis Vega

Kory Watson

Ivy Yu

http://xkcd.com/163/

CSE351, Winter 2019L14: Structs & Alignment

Administrivia
v Snow Day! Online office hours

v Mid-survey due Thursday (2/14)

v Homework 3 due Friday (2/15)

v Take Home Midterm (Thursday 2/14)
§ Due that night!

2

CSE351, Winter 2019L14: Structs & Alignment

Roadmap

3

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2019L14: Structs & Alignment

Data Structures in Assembly
v Arrays

§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment

v Unions

4

CSE351, Winter 2019L14: Structs & Alignment

Multi-Level Array Example

5

int cmu[5] = { 1, 5, 2, 1, 3 };
int uw[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

int* univ[3] = {uw, cmu, ucb};

Is a multi-level array the
same thing as a 2D array?

zip_dig univ2D[3] = {
{ 9, 8, 1, 9, 5 },
{ 1, 5, 2, 1, 3 },
{ 9, 4, 7, 2, 0 }

};

One array declaration = one contiguous block of memory

NO
2D Array Declaration:

Multi-Level Array Declaration(s):

CSE351, Winter 2019L14: Structs & Alignment

Multi-Level Array Example

6

v Variable univ denotes array
of 3 elements

v Each element is a pointer
§ 8 bytes each

v Each pointer points to array
of ints

36160
16
60

168
176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Note: this is how Java represents multi-dimensional arrays

int* univ[3] = {uw, cmu, ucb};

int cmu[5] = { 1, 5, 2, 1, 3 };
int uw[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

CSE351, Winter 2019L14: Structs & Alignment

Element Access in Multi-Level Array

7

v Computation
§ Element access Mem[Mem[univ+8*index]+4*digit]
§ Must do two memory reads

• First get pointer to row array
• Then access element within array

§ But allows inner arrays to be different lengths (not in this example)

salq $2, %rsi # rsi = 4*digit
addq univ(,%rdi,8), %rsi # p = univ[index] + 4*digit
movl (%rsi), %eax # return *p
ret

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Winter 2019L14: Structs & Alignment

Array Element Accesses

8

int get_sea_digit
(int index, int digit)

{
return sea[index][digit];

}

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

Nested array Multi-level array

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

36160
16

60
168
176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Winter 2019L14: Structs & Alignment

Multi-Level Referencing Examples

Reference Address Value Guaranteed?
univ[2][3]
univ[1][5]
univ[2][-2]
univ[3][-1]
univ[1][12]
§ C code does not do any bounds checking
§ Location of each lower-level array in memory is not guaranteed

9

36160
16
60

168
176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Winter 2019L14: Structs & Alignment

Summary
v Contiguous allocations of memory
v No bounds checking (and no default initialization)
v Can usually be treated like a pointer to first element
v int a[4][5]; → array of arrays

§ all levels in one contiguous block of memory
v int* b[4]; → array of pointers (to arrays)

§ First level in one contiguous block of memory
§ Each element in the first level points to another “sub” array
§ Parts anywhere in memory

10

CSE351, Winter 2019L14: Structs & Alignment

Data Structures in Assembly
v Arrays

§ One-dimensional
§ Multi-dimensional (nested)
§ Multi-level

v Structs
§ Alignment

v Unions

11

CSE351, Winter 2019L14: Structs & Alignment

Structs in C

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song song1;

song1.lengthInSeconds = 213;
song1.yearRecorded = 1994;

Song song2;

song2.lengthInSeconds = 248;
song2.yearRecorded = 1988;

12

v Way of defining compound data types
v A structured group of variables, possibly including other structs

CSE351, Winter 2019L14: Structs & Alignment

Struct Definitions
v Structure definition:

§ Does NOT declare a variable
§ Variable type is “struct name”

v Joint struct definition and typedef
§ Don’t need to give struct a name in this case

struct name {
/* fields */

};

typedef struct {
/* fields */

} name;
name n1;

struct name name1, *pn, name_ar[3];

struct nm {
/* fields */

};
typedef struct nm name;
name n1;

pointer

array

Easy to forget
semicolon!

CSE351, Winter 2019L14: Structs & Alignment

Scope of Struct Definition
v Why is placement of struct definition important?

§ What actually happens when you declare a variable?
• Creating space for it somewhere!

§ Without definition, program doesn’t know how much space

v Almost always define structs in global scope near the
top of your C file
§ Struct definitions follow normal rules of scope

14

struct data {
int ar[4];
long d;

};

Size = _____ bytes struct rec {
int a[4];
long i;
struct rec* next;

};Size = _____ bytes

CSE351, Winter 2019L14: Structs & Alignment

Accessing Structure Members
v Given a struct instance, access

member using the . operator:
struct rec r1;
r1.i = val;

v Given a pointer to a struct:
struct rec *r;
r = &r1; // or malloc space for r to point to

We have two options:
• Use * and . operators: (*r).i = val;
• Use -> operator for short: r->i = val;

v In assembly: register holds address of the first byte
§ Access members with offsets

15

struct rec {
int a[4];
long i;
struct rec *next;

};

CSE351, Winter 2019L14: Structs & Alignment

Java side-note
v An instance of a class is like a pointer to a struct

containing the fields
§ (Ignoring methods and subclassing for now)
§ So Java’s x.f is like C’s x->f or (*x).f

v In Java, almost everything is a pointer (“reference”) to
an object
§ Cannot declare variables or fields that are structs or arrays
§ Always a pointer to a struct or array
§ So every Java variable or field is ≤ 8 bytes (but can point to

lots of data)

16

class Record { ... }
Record x = new Record();

CSE351, Winter 2019L14: Structs & Alignment

Structure Representation

v Characteristics
§ Contiguously-allocated region of memory
§ Refer to members within structure by names
§ Members may be of different types

17

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CSE351, Winter 2019L14: Structs & Alignment

Structure Representation

v Structure represented as block of memory
§ Big enough to hold all of the fields

v Fields ordered according to declaration order
§ Even if another ordering would be more compact

v Compiler determines overall size + positions of fields
§ Machine-level program has no understanding of the

structures in the source code
18

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CSE351, Winter 2019L14: Structs & Alignment

r in %rdi, index in %rsi
movq 16(%rdi), %rax
ret

long get_i(struct rec *r)
{

return r->i;
}

Accessing a Structure Member

v Compiler knows the
offset of each member
within a struct
§ Compute as
*(r+offset)
• Referring to absolute

offset, so no pointer
arithmetic

19

r->i

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CSE351, Winter 2019L14: Structs & Alignment

r in %rdi
__ ,%rax

ret

Exercise: Pointer to Structure Member

20

r in %rdi
__ ,%rax

ret

long* addr_of_i(struct rec *r)
{

return &(r->i);
}

struct rec** addr_of_next(struct rec *r)
{

return &(r->next);
}

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CSE351, Winter 2019L14: Structs & Alignment

r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_addr_of_array_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating Pointer to Array Element

v Generating Pointer to
Array Element
§ Offset of each structure

member determined at
compile time

§ Compute as:
r+4*index

21

r+4*index

&(r->a[index])

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

};

struct rec *r;

CSE351, Winter 2019L14: Structs & Alignment

Nested Struct

22

&f->my_bar

&f->my_bar.y

a b

0 8 16

struct foo {
long a;
long b;
struct bar my_bar;

};

struct bar {
long x;
long y;

};

struct foo *f;

x y
24 32

CSE351, Winter 2019L14: Structs & Alignment

Nested Struct

23

a b

0 8 16

?????????

struct foo {
long a;
long b;
struct foo my_foo;

};

CSE351, Winter 2019L14: Structs & Alignment

Review: Memory Alignment in x86-64
v Aligned means that any primitive object of ! bytes

must have an address that is a multiple of !
v Aligned addresses for data types:

24

! Type Addresses
1 char No restrictions
2 short Lowest bit must be zero: …02

4 int, float Lowest 2 bits zero: …002

8 long, double, * Lowest 3 bits zero: …0002

CSE351, Winter 2019L14: Structs & Alignment

Alignment Principles
v Aligned Data
§ Primitive data type requires ! bytes
§ Address must be multiple of !
§ Required on some machines; advised on x86-64

v Motivation for Aligning Data
§ Memory accessed by (aligned) chunks of bytes

(width is system dependent)
• Inefficient to load or store value that spans quad word boundaries
• Virtual memory trickier when value spans 2 pages (more on this later)

§ Though x86-64 hardware will work regardless of alignment of
data

25

CSE351, Winter 2019L14: Structs & Alignment

Structures & Alignment
v Unaligned Data

v Aligned Data
§ Primitive data type requires ! bytes
§ Address must be multiple of !

26

c i[0] i[1] v
p p+1 p+5 p+9 p+17

internal fragmentation

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 Multiple of 8

CSE351, Winter 2019L14: Structs & Alignment

Satisfying Alignment with Structures (1)
v Within structure:
§ Must satisfy each element’s alignment requirement

v Overall structure placement
§ Each structure has alignment requirement !"#$

• !"#$ = Largest alignment of any element
• Counts array elements individually as elements
• Inner structs are aligned to their largest alignment

v Example:
§ !"#$ = 8, due to double element

27

struct S1 {
char c;
int i[2];
double v;

} *p;

c i[0] i[1] v3 bytes 4 bytes
p+0 p+4 p+8 p+16 p+24

Multiple of 4 Multiple of 8
Multiple of 8 internal fragmentation

CSE351, Winter 2019L14: Structs & Alignment

Satisfying Alignment with Structures (2)
v Can find offset of individual fields

using offsetof()
§ Need to #include <stddef.h>
§ Example: offsetof(struct S2,c) returns 16

v For largest alignment requirement !"#$,
overall structure size must be multiple of !"#$
§ Compiler will add padding at end of

structure to meet overall structure
alignment requirement

28

v i[0] i[1] c 7 bytes
p+0 p+8 p+16 p+24

external fragmentation

struct S2 {
double v;
int i[2];
char c;

} *p;

Multiple of 8Multiple of 8

CSE351, Winter 2019L14: Structs & Alignment

Arrays of Structures
v Overall structure length multiple of !"#$
v Satisfy alignment requirement

for every element in array

29

a[0] a[1] a[2] • • •
a+0 a+24 a+48 a+72

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7 bytes
a+24 a+32 a+40 a+48

external fragmentation

CSE351, Winter 2019L14: Structs & Alignment

Accessing Array Elements
v Compute start of array element as: 12*index
§ sizeof(S3) = 12, including alignment padding

v Element j is at offset 8 within structure
v Assembler gives offset a+8

30

short get_j(int index)
{

return a[index].j;
}

%rdi = index
leaq (%rdi,%rdi,2),%rax # 3*index
movzwl a+8(,%rax,4),%eax

a[0] • • • a[index] • • •
a+0 a+12 a+12*index

i 2 bytes v j 2 bytes
a+12*index

a+12*index+8

struct S3 {
short i;
float v;
short j;

} a[10];

CSE351, Winter 2019L14: Structs & Alignment

Alignment of Structs
v Compiler will do the following:

§ Maintains declared ordering of fields in struct
§ Each field must be aligned within the struct

(may insert padding)
• offsetof can be used to get actual field offset

§ Overall struct must be aligned according to largest field
§ Total struct size must be multiple of its alignment

(may insert padding)
• sizeof should be used to get true size of structs

31

CSE351, Winter 2019L14: Structs & Alignment

How the Programmer Can Save Space
v Compiler must respect order elements are declared in

§ Sometimes the programmer can save space by declaring
large data types first

32

struct S4 {
char c;
int i;
char d;

} *p;

struct S5 {
int i;
char c;
char d;

} *p;

c i3 bytes d 3 bytes ci d 2 bytes

12 bytes 8 bytes

CSE351, Winter 2019L14: Structs & Alignment

Peer Instruction Question
v Minimize the size of the struct by re-ordering the vars

v What are the old and new sizes of the struct?
sizeof(struct old) = _____ sizeof(struct new) = _____

33

struct old {
int i;

short s[3];

char *c;

float f;
};

struct new {
int i;

______ ______;

______ ______;

______ ______;
};

CSE351, Winter 2019L14: Structs & Alignment

Summary
v Arrays in C

§ Aligned to satisfy every element’s alignment requirement
v Structures

§ Allocate bytes in order declared
§ Pad in middle and at end to satisfy alignment

34

