WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Structs & Alignment

CSE 351 Winter 2019

CSE351, Winter 2019

Instructors:
Max Wi .

d |IIsey MAN, YOURE BEING IN(ONSISTENT
Luis Ceze WITH YOUR ARRAY INDICES. SOME

ARE FROM ONE, S0ME FROM ZERD.

Teaching Assistants: DIFFERENT TASKs CALL FOR VAT WHAT?

. DIFFERENT CONVENTIONS. TO)
Britt Henderson QUOTE STANFORD ALGOR ITHMS { WELL, THATS WHAT HE

EXPERT DONALD KNUTH,

Lukas Joswiak “\JHO ARE You? HOW DID

Josie Lee YOU GET m; MY HOLSE?"

Wei Lin
Daniel Snitkovsky

Luis Vega

SAID WHEN | ASKED
Him ABOUT IT.

]

Kory Watson
lvy Yu

http://xkcd.com/163/

http://xkcd.com/163/

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Administrivia

+» Snow Day! Online office hours

» Mid-survey due Thursday (2/14)

+» Homework 3 due Friday (2/15)

+» Take Home Midterm (Thursday 2/14)
= Due that night!

CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Roadmap

CSE351, Winter 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)) ; Car ¢ = new Car () Integers & floats
c->miles 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17) ; Procedures & stacks
float mpg get mpg(c) ; float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
— —— Memory & caches
Assembly get_mpg: Processes
. pushqg Srbp .

language: mova crsp, Srbp Virtual memory

.. Memory allocation

popq srbp Java vs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A \
coae: 1000100111000010 A
110000011111101000011111 Windows 10 05 X Yosemite 3
i |
v v

Computer
system:

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Data Structures in Assembly

«» Arrays
" One-dimensional
=" Multi-dimensional (nested)
= Multi-level
+ Structs
= Alignment

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Multi-Level Array Example

Multi-Level Array Declaration(s):

int cmu([5] = { 1, 5, 2, 3}
int uw([5] = { 9, 8, 1, 5 };
int ucb[5] = { 9, 4, 7, 0 };
int* univ[3] = {uw, cmu, ucb};

2D Array Declaration:

zip dig univ2D[3] = {
{ 9/ 8’ 1/ 9/ 5 }/
{ l/ 5’ 2/ l/ 3 }/
{ 9, 4, 7, 2, 0}

b

Is a multi-level array the
same thing as a 2D array?

One array declaration = one contiguous block of memory

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Multi-Level Array Example

int cmu[5] = { 1, 5, 2, 1, 3 }; + Variable univ denotes array
int uw([5] = { 9, 8, 1, 9, 5 };
int ucb([(5] = { 9, 4, 7, 2, 0 };

of 3 elements

Each element is a pointer

int* univ[3] = {uw, cmu, ucb}; = 8 bytes each
Each pointer points to array
of ints
cmu
} 1] S | 2 | 1] 3
univ
16 20 24 28 32 36
160 i 36 uw
* 9 3 1 9 5
Leg e + + + +
36 4 44 4 2 6
176 —)| 60 uch 0 8 > >
} 9 | 4 | / | 2 | 0 |
60 64 68 72 76 80

Note: this is how Java represents multi-dimensional arrays

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Element Access in Multi-Level Array

int get univ digit
(int index, int digit)

cmu

CSE351, Winter 2019

1 5 2 1 3
univ T 1
16 20 24 28 32
160 —p 36.>< uw

{ 168 —» 1]

. . . . 176 —»| 60 ucbh 36 40 44 48 52

return univ[index] [digit]; Q_//, 5 : _ S 5
} 1 } 1 1

} 60 64 68 72 76
salq $2, %Srsi rsi = 4*digit
addqg univ(, $rdi,8), %Srsi p = univ/[index] + 4*digit
movl (35rsi), %eax return *p
ret

+» Computation

= Element access Mem[Mem[univ+8*index]+4*digit]

" Must do two memory reads

 First get pointer to row array

- Then access element within array

= But allows inner arrays to be different lengths (not in this example)

CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Array Element Accesses

Nested array

Multi-level array

int get sea digit

{

(int index, int digit)

return sea[index] [digit];

int get univ digit
(int index, int digit)
{

return univ|[index] [digit];

76 96 116

136

156

1 5 2 1 3
univ
16 20 24 28 32
160 —» 36.§< uw

168 —>»
36 40 44 48 52
176 —» 60@_ ucb
~___v] 9 4 7 2 0
J 1 J 1
60 64 68 72 76

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit]

Mem[Mem[univ+8*index]+4*digit]

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Multi-Level Referencing Examples

cmu
} 1 | 5 | 2 | 1 | 3
univ
16 20 24 28 32 36
160 —— 36 uw
} 9 8 1 9 5
ea T ‘ ‘ ‘ ‘ ‘
36 4 44 4 2
176 —| 60 uch 0 8 > >6
* 9 | 4 | 7 | 2 | 0 |
60 64 68 72 76 80
Reference Address Value Guaranteed?
univi([2] [3]
univ[1l][5]
univi[2] [-2]
univ[3] [-1]

univ[1l][12]
" Ccode does not do any bounds checking
" Location of each lower-level array in memory is not guaranteed

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Summary

Contiguous allocations of memory

No bounds checking (and no default initialization)
Can usually be treated like a pointer to first element
int a[4][5]; — arrayofarrays

= all levels in one contiguous block of memory

int* b[4]; — arrayof pointers (to arrays)

= First level in one contiguous block of memory

= Each element in the first level points to another “sub” array
= Parts anywhere in memory

10

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Data Structures in Assembly

< Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

+» Structs
= Alignment

11

WA UNIVERSITY of WASHINGTON

Structs in C

L14: Structs & Alignment

Way of defining compound data types

A structured group of variables, possibly including other structs

typedef struct {
int lengthInSeconds;
int yearRecorded;

} Song;

Song songl;

songl.lengthInSeconds
songl.yearRecorded

Song song2;

songZ.lengthInSeconds
songZ.yearRecorded

= 213;
= 1994;

= 248;
= 1988;

CSE351, Winter 2019

typedef struct {

int lengthInSeconds;
int yearRecorded;

} Song;
song1
P lengthInSeconds: 213
yearRecorded: 1994
song2
—

lengthInSeconds: 248
yearRecorded: 1988

12

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Struct Definitions

« Structure definition:
" Does NOT declare a variable

CSE351, Winter 2019

struct name {
/* fields */

" Variable type is “struct name” bi<
g pointer —— Easy to forget
= .
struct name namel, *pn, name ar[3]; semicolon!
- =
o~ array

+ Joint struct definition and typedef

= Don’t need to give struct a name in this case

struct nm {
/* fields */
} i
typedef struct nm name;
name nl;

—)

typedef struct {
/* fields */

} name;

name nl;

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Scope of Struct Definition

+» Why is placement of struct definition important?
= What actually happens when you declare a variable?

- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |«— Size= bytes | struct rec {
int ar[4]; int af[4];
long d; long 1;
}; struct rec@ next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

14

L14: Structs & Alignment CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON

Accessing Structure Members

+» @iven a struct instance, access
member using the . operator: |struct rec |
int af[4];

struct rec rl; long 1i;
struct rec *next;

rl.1 = val;

+» @lven a pointer to a struct:

struct rec *r;
r = &rl; // or malloc space

bE

for r to point to

We have two options:
- Use * and . operators: (*r).i = val;

- Use —> operator for short: r->i = val;

+» In assembly: register holds address of the first byte

= Access members with offsets
15

L14: Structs & Alignment CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON

class Record { ... }

Java Side'nOte Record x = new Record() ;

+ An instance of a class is like a pointer to a struct

containing the fields
= (Ignoring methods and subclassing for now)
" SolJava’s x.f islikeC's x->f or (*x).f

+ In Java, almost everything is a pointer (“reference”) to

an object
= Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is < 8 bytes (but can point to
lots of data)

16

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Structure Representation

struct rec { r

int a[4];

long 1i;

struct rec *next; a 1 next
b 0 16 24 32
struct rec *r;

+ Characteristics
= Contiguously-allocated region of memory
= Refer to members within structure by names
= Members may be of different types

17

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Structure Representation

struct rec { r

int a[4];

long 1i;

struct rec *next; a 1 next
b 0 16 24 32
struct rec *r;

% Structure represented as block of memory
= Big enough to hold all of the fields

+ Fields ordered according to declaration order
= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the

structures in the source code
18

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Accessing a Structure Member

struct rec ({ T r—>1
int af4];
long 1i;
struct rec *next; a 1 next
b 0 16 24 32
* .
struct rec ™r; long get i (struct rec *r)

» Compiler knows the {

offset of each member |}
within a struct

return r—>i;

" Compute as # r in %$rdi, index in $rsi
* (r_l_offset) movq 16(%rdl) ’ $rax
ret

- Referring to absolute
offset, so no pointer

arithmetic
19

CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Exercise: Pointer to Structure Member

return & (r->next);

}

ret

struct rec { T
int af4];
long 1i; M
struct rec *next; a 1 next
& 0 16 24 32
struct rec *r;
long* addr of i (struct rec *r) # r in %rdi
{ o
return & (r—->1i); yorax
} ret
struct rec** addr of next (struct rec *r) # r in %rdi
{ , 3rax

20

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Generating Pointer to Array Element

struct rec {
int af[4];
long 1i;
struct rec *next;

bE

struct rec *r;

+» Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

r r+4*index
a i next
0 16 24 32

CSE351, Winter 2019

int* find addr of array elem
(struct rec *r, long index)

{

return &r->a[index];

) N\

)
&(r->a[index])

r 1n %rdi, index in 3%rsi
leaq (%5rdi, %rsi,4), Srax

ret

21

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Nested Struct

struct foo {

long a; —

long b &f->my bar

struct bar my bar;
bi &f->my bar.y
struct bar { v ¥

long x; a b X Y%

long y; 0 3 16 24 32

%

struct foo *f;

22

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Nested Struct

struct foo {

long a;
long b;
struct foo my foo;
b7
a b P07
0 8 16

23

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Review: Memory Alighment in x86-64

+» Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+ Aligned addresses for data types:

1 char No restrictions

2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

8 long, double, * Lowest 3 bitszero: ...000,

24

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Alignment Principles

+ Aligned Data
= Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries

 Virtual memory trickier when value spans 2 pages (more on this later)

" Though x86-64 hardware will work regardless of alignment of
data

25

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Structures & Alighment

+» Unaligned Data

CSE351, Winter 2019

struct S1 {

char c;
C 1[0] 1[1] v int 1[2];
p ptl p+5 pt+9 p+17 SOUAO W
b *p;
+ Aligned Data
= Primitive data type requires K bytes
= Address must be multiple of K
c 1[0] 1[1] v
p+0 o4 p+8 p+16 p+24
Multiple of\Q Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

26

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Winter 2019

Satisfying Alighment with Structures (1)

Within structure:

struct S1 {

. _ _ char c;
= Must satisfy each element’s alignment requirement Srate 4727 ¢
Overall structure placement i‘°Uble Vi
: . ¥
= Each structure has alignment requirement K«
- K3x = Largest alignment of any element
- Counts array elements individually as elements
« Inner structs are aligned to their largest alignment
Example:
" Knax =8, dueto double element
C 1[0] 1[1]
p+0 o4 p+8 p+16 p+24

a A

Multiple of\Q Multiple of 8

Multiple of 8 internal fragmentation

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Satisfying Alignment with Structures (2)

«» Can find offset of individual fields Stzuc;lsz {
. ou e Vv,
using offsetof () T (21
" Needto #include <stddef.h> char c;
= Example: offsetof (struct S2, c) returns 16 i

+ For largest alignment requirement K,
overall structure size must be multiple of K.«

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

A 1[0] 1[1] C
p+0 p+8 pt+16 p+24

a2

Multiple of 8 external fragmentation Multiple of 8

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Arrays of Structures

- . struct S2 {
» Overall structure length multiple of K, ;» touble v
<+ Satisfy alignment requirement e LA

. cnar cC;

for every element in array } al[10];
al0] alll] al2] °

a+0 a+24 a+48 at+72
\V4 1[0] 1[1] C

a+24 a+32 a+40 ///ﬂ a+48

external fragmentation 2o

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Accessing Array Elements

+ Compute start of array element as: 12*index |struct S3 {
,) _) _ short 1i;
" sizeof (S3) = 12,including alignment padding float v:
+ Element j is at offset 8 within structure short j;
. } all0];
+« Assembler gives offset a+8
al0] ° o o al[index] e o o
a+0 atl2 atl2*index
1 \% 7
atl2*index 1
atl2*index+8
short get j(int index) # %rdi = index
{ leag (%rdi,%rdi,2),%rax # 3*index
return a[index].J; movzwl a+8 (, $rax, 4), %seax

30

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Alignment of Structs

+» Compiler will do the following:
= Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= Qverall struct must be aligned according to largest field

= Total struct size must be multiple of its alignment
(may insert padding)

- sizeof should be used to get true size of structs

31

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int i; - char c;
char d; char d;
| oF B oF
C 1 d 1 cld

| |
12 bytes 8 bytes

32

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Peer Instruction Question

+ Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int i; int i;
short s[3]; ;
float £f; ;
2 2

«» What are the old and new sizes of the struct?

sizeof(struct old) = sizeof(struct new) =

33

W UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Winter 2019

Summary

+ Arraysin C
= Aligned to satisfy every element’s alignment requirement
« Structures

= Allocate bytes in order declared
= Padin middle and at end to satisfy alignment

34

