Floating Point II, x86-64 Intro

CSE 351 Winter 2019

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants: Daniel Snitkovsky
Britt Henderson Luis Vega
Lukas Joswiak
Josie Lee
Wei Lin

Administrivia

* Lab 1b due Friday (1/25)
- Submit bits.c and lab1Breflect.txt
* Homework 2 due next Friday (2/1)
- On Integers, Floating Point, and x86-64
* Section tomorrow on Integers and Floating Point

Denorm Numbers

* Denormalized numbers ($\mathrm{E}=0 \times 00$)
- No leading 1
- Uses implicit exponent of -126
* Denormalized numbers close the gap between zero and the smallest normalized number
- Smallest norm: $\pm 1.0 \ldots 0_{\text {two }} \times 2^{-126}= \pm 2^{-126}$

So much

- Smallest denorm: $\pm 0.0 \ldots 01_{\text {two }} \times 2^{-126}= \pm 2^{-149}$
- There is still a gap between zero and the smallest denormalized number

Other Special Cases

* $\mathrm{E}=0 \mathrm{OFF}, \mathrm{M}=0: \pm \infty$
- e.g. division by 0
- Still work in comparisons!
* $\mathrm{E}=0 \mathrm{O} \mathrm{xF}, \mathrm{M} \neq 0$: Not a Number (NaN)
- e.g. square root of negative number, $0 / 0, \infty-\infty$
- NaN propagates through computations
- Value of M can be useful in debugging (tells you cause of NaN)
* New largest value (besides ∞)?
- E $=0 x F F$ has now been taken!
- $E=0 x F E$ has largest: $1.1 . . .1_{2}^{23} \times 2_{1}^{127}=2^{128}-2^{104}$
$\rightarrow 254$-bias

Floating Point Encoding Summary

$\begin{aligned} & \text { smallest } E\{ \\ & \text { Call } 0^{\prime} \text { 's } \end{aligned}$	E	M	Meaning
	0×00	0	± 0
	0×00	non-zero	\pm denorm num
$\begin{aligned} & \text { everything } \\ & \text { else } \end{aligned}$	0x01-0xFE	anything	\pm norm num
$\begin{aligned} & \text { largest } E\} \\ & \text { (all 1's) } \end{aligned}$	$0 \times F F$	0	$\pm \infty$
	0xFF	non-zero	NaN

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Tiny Floating Point Representation

* We will use the following 8-bit floating point representation to illustrate some key points:

\mathbf{S}	\mathbf{E}	\mathbf{M}
1	4	3

* Assume that it has the same properties as IEEE floating point:
- bias $=2^{\omega-1}-1=2^{n-1}-1=7$
- encoding of $-0=O b 1$ (0000 $000=0 \times 80$
- encoding of $+\infty=0 b 0111 / 1 \quad 000=0 \times 78$
- encoding of the largest $(+)$ normalized \# = Ob 0 111/0 111 = 0 $\times 77$
- encoding of the smallest (+) normalized $\#=0 b 0000 / 1000=0 \times 08$

Peer Instruction Question

* Using our 8-bit representation, what value gets stored when we try to encode $2.625=2^{1}+2^{-1}+2^{-3}$?

E. We're lost...

$$
\text { stored as: Ob 1000 010 }=2.5
$$

Peer Instruction Question

* Using our 8-bit representation, what value gets stored when we try to encode $384=2^{8}+2^{7} ?=2^{8}\left(1+2^{-1}\right)$

\boldsymbol{S}	\mathbf{E}	\mathbf{M}
1	4	3

$$
\begin{aligned}
E & =\text { Exp }^{E}+\frac{\text { bias }}{} \\
& =8+7=15 \\
& =0 b 111
\end{aligned}
$$

this falls outside of the normalized exponent range.

$$
\begin{aligned}
& \text { this number is too large, so we store } \\
& \begin{array}{l}
+\infty
\end{array}<0 b 01111000 \\
& \text { instead }
\end{aligned}
$$

Distribution of Values

* What ranges are NOT representable?
- Between largest norm and infinity Overflow (Exp too large)
- Between zero and smallest denorm Underflow (Exp too small)
- Between norm numbers? Rounding
* Given a FP number, what's the bit pattern of the next largest representable number? if $M=0 b 0 \ldots 00$, then $2 \mathrm{Ekp} \times 1.0$
- What is this "step" when Exp $=0$? $2^{-23} \quad \frac{2^{2}}{\text { diff }=2^{E \times p}-23}$
- What is this "step" when Exp $=100$? 2^{77}
* Distribution of values is denser toward zero

Floating Point Rounding

* The IEEE 754 standard actually specifies different rounding modes:
Round to nearest, ties to nearest even digit
- Round toward $+\infty$ (round up)
- Round toward $-\infty$ (round down)
- Round toward 0 (truncation)
* In our tiny example:
- Man = 1.001/01 rounded to M = 0 b001

\mathbf{S}	E	M
1	4	3

- Man = $1.001 / 11^{\text {r }}$ rounded to $\mathrm{M}=0 \mathrm{bO} 0$
- Man = 1.001/10 rounded to $=06010$

$$
M_{a n}=1.000 / 10 \text { rounded to } M=0 b 000^{2}
$$

Floating Point Operations: Basic Idea

$* x+_{f} y=\operatorname{Round}(x+y)$
$* x *_{f} y=\operatorname{Round}(x * y)$

* Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specificed precision (width of M)
- Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

* Overflow yields $\pm \infty$ and underflow yields 0
* Floats with value $\pm \infty$ and NaN can be used in operations
- Result usually still $\pm \infty$ or NaN, but not always intuitive
* Floating point operations do not work like real math, due to rounding
- Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1e100)
- Not distributive: $100 *(0.1+0.2) \quad!=100 * 0.1+100 * 0.2$

$$
30.00000000000000355330
$$

- Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Floating Point in C

* Two common levels of precision:

float	$1.0 f$	single precision (32-bit)
double	1.0	double precision (64-bit)

* \#include <math.h> to get INFINITY and NAN constants <float.h> for additional constants
* Equality ($==$) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

$$
\text { instead we abs }\left(f 1-f_{2}\right)<\sum_{\hat{\tau}_{\text {some }}}^{2^{-20}}
$$

Floating Point Conversions in C

* Casting between int, float, and double changes the bit representation
- int \rightarrow float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible
- int or float \rightarrow double
- Exact conversion (all 32-bit ints representable)
- long \rightarrow double
- Depends on word size (32-bit is exact, 64-bit may be rounded)
- double or float \rightarrow int
- Truncates fractional part (rounded toward zero)
- "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Peer Instruction Question

* We execute the following code in C. How many bytes are the same (value and position) between i and f ?

Floating Point and the Programmer

Floating Point Summary

* Floats also suffer from the fixed number of bits available to represent them
- Can get overflow/underflow
- "Gaps" produced in representable numbers means we can lose precision, unlike ints
- Some "simple fractions" have no exact representation (e.g. 0.2)
- "Every operation gets a slightly wrong result"
* Floating point arithmetic not associative or distributive
- Mathematically equivalent ways of writing an expression may compute different results
* Never test floating point values for equality!
* Careful when converting between ints and floats!

Number Representation Really Matters

* 1991: Patriot missile targeting error
- clock skew due to conversion from integer to floating point
* 1996: Ariane 5 rocket exploded (\$1 billion)
- overflow converting 64-bit floating point to 16-bit integer
* 2000: Y2K problem
- limited (decimal) representation: overflow, wrap-around
* 2038: Unix epoch rollover
- Unix epoch = seconds since 12am, January 1, 1970
- signed 32-bit integer representation rolls over to TMin in 2038
* Other related bugs:
- 1982: Vancouver Stock Exchange 10\% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Roadmap

Architecture Sits at the Hardware Interface

Source code
Different applications or algorithms

Compiler

Perform optimizations, generate instructions

Hardware
Different implementations

Definitions

* Architecture (ISA): The parts of a processor design that one needs to understand to write assembly code
- "What is directly visible to software"
* Microarchitecture: Implementation of the architecture
- CSE/EE 469

Instruction Set Architectures

* The ISA defines:
- The system's state (e.g. registers, memory, program counter)
- The instructions the CPU can execute
- The effect that each of these instructions will have on the system state

Instruction Set Philosophies

* Complex Instruction Set Computing (CISC): Add more and more elaborate and specialized instructions as needed
- Lots of tools for programmers to use, but hardware must be able to handle all instructions
- x86-64 is CISC, but only a small subset of instructions encountered with Linux programs
* Reduced Instruction Set Computing (RISC): Keep instruction set small and regular
- Easier to build fast hardware
- Let software do the complicated operations by composing simpler ones

General ISA Design Decisions

* Instructions
- What instructions are available? What do they do?
- How are they encoded?
* Registers
- How many registers are there?
- How wide are they?
* Memory
- How do you specify a memory location?

Mainstream ISAs

Designer	Intel, AMD
Bits	16-bit, 32-bit and 64-bit
Introduced	1978 (16-bit), 1985 (32-bit), 2003
(64-bit)	
Design	CISC
Type	Register-memory
Encoding	Variable (1 to 15 bytes)
Endianness	Little

Macbooks \& PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

ARM
ARM architectures
Designer ARM Holdings
Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RISC
Type Register-Register
Encoding AArch64/A64 and AArch32/A32 use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and 32-bit instructions. ARMv7 userspace compatibility ${ }^{[1]}$

Endianness Bi (little as default)
Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIPS

Designer	MIPS Technologies, Inc.
Bits	64 -bit $(32 \rightarrow 64)$
Introduced	$1981 ; 35$ years ago
Design	RISC
Type	Register-Register
Encoding	Fixed
Endianness	Bi

Digital home \& networking equipment (Blu-ray, PlayStation 2) MIPS Instruction Set

Summary

* Floating point encoding has many limitations
- Overflow, underflow, rounding
- Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
- Floating point arithmetic is NOT associative or distributive
* Converting between integral and floating point data types does change the bits
* x86-64 is a complex instruction set computing (CISC) architecture

