Floating Point II, x86-64 Intro

CSE 351 Winter 2019

Instructors:	Teaching Assistants:	Daniel Snitkovsky
Max Willsey	Britt Henderson	Luis Vega
Luis Ceze	Lukas Joswiak	Kory Watson
	Josie Lee	Ivy Yu
	Wei Lin	

http://xkcd.com/899/

Administrivia

- Lab 1b due Friday (1/25)
 - Submit bits.c and lab1Breflect.txt
- Homework 2 due next Friday (2/1)
 - On Integers, Floating Point, and x86-64
- Section tomorrow on Integers and Floating Point

Denorm Numbers

- Denormalized numbers (E = 0x00)
 - No leading 1
 - Uses implicit exponent of –126
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: ± 1.0...0_{two}×2⁻¹²⁶ = ± 2⁻¹²⁶

So much closer to 0

- Smallest denorm: ± 0.0...01_{two}×2⁻¹²⁶ = ± 2⁻¹⁴⁹
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

- all ones e.g. division by O
 - Still work in comparisons!
 - * E = OxFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty \infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)
 - ♦ New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

	E	Μ	Meaning
smallest E {	0x00	0	± 0
(all 0's)	0x00	non-zero	± denorm num
everything {	0x01 – 0xFE	anything	± norm num
largest E	OxFF	0	<u>+</u> ∞
(all 1's)	OxFF	non-zero	NaN

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- * Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Tiny Floating Point Representation

We will use the following 8-bit floating point representation to illustrate some key points:

- Assume that it has the same properties as IEEE floating point:
 - bias = $2^{-1} 1 = 2^{-1} 1 = 7$

 - encoding of $-0 = 0b \pm 0000 = 0 \times 80$ encoding of $+\infty = 0b = 0 \pm 111/1 = 000 = 0 \times 78$
 - encoding of the largest (+) normalized $\# = 0b \ 0 \ 111/0 \ 111 = 0x77$
 - encoding of the smallest (+) normalized $\# = Ob O OO/1 OO = O_{\times}O8$

Peer Instruction Question

Using our 8-bit representation, what value gets stored when we try to encode 2.625 = 2¹ + 2⁻¹ + 2⁻³?

Peer Instruction Question

Using our 8-bit representation, what value gets stored when we try to encode $384 = 2^8 + 2^7 = 2^8 (1 + 2^1)$

S E M =
$$2^{8} \times 1.1_{2}$$

1 4 3 S=0
E = Exp + bias
= $8 + 7 = 15$
= $0 \cdot b \cdot 1 \cdot 1 \cdot 1$
7
84
b - 111
7
this falls autside of the
normalized exponent range!
this number is the large, so we store
(+ $\infty \leftrightarrow 0$ b 0 1111 000
instead

A. +2

B. + 3

- D. Na
- E. We

 $diff = 7^{E \times p^{-23}}$

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow (Exp too large)
 - Between zero and smallest denorm Underflow (Exp too small)

Rounding

- Between norm numbers?
- Given a FP number, what's the bit pattern of the next largest representable number?
 H=060...00, then 2^{Exp} × 1.0 f M=060...01, then 2^{Exp} × (1+2⁻²⁵)
 - What is this "step" when Exp = 0? 2⁻²³
 - What is this "step" when Exp = 100? 2^{**}

Floating Point Rounding

This is extra (non-testable) material

The IEEE 754 standard actually specifies different rounding modes:

Round to nearest, ties to nearest even digit

- Round toward $+\infty$ (round up)
- Round toward $-\infty$ (round down)
- Round toward 0 (truncation)
- In our tiny example:
 - Man = 1.001/01 rounded to M = 0b001
 - Man = 1.001/11 rounded to M = 0b010
 - Man = 1.001/10 rounded to M = 0b010Man = 1.000/10 rounded to M = 0b000 even digit

Floating Point Operations: Basic Idea

- $* x +_f y = Round(x + y)$
- x + y = Round(x + y)
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then *round* the result to make it fit into the specificed precision (width of M)
 - Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

- Overflow yields $\pm \infty$ and underflow yields 0
- ✤ Floats with value ±∞ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math,
 due to rounding
 - Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1e100)
 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2 30.0000000000003553 30

0

- Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

3.14

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- * Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point in C

- Two common levels of precision:
 - float 1.0f single precision (32-bit)
 - double 1.0 double precision (64-bit)
- * #include <math.h> to get INFINITY and NAN
 constants <float.h> for additional constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int \rightarrow float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float \rightarrow double
 - Exact conversion (all 32-bit ints representable)
 - long \rightarrow double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Peer Instruction Question

* We execute the following code in C. How many bytes are the same (value and position) between i and f?

Floating Point and the Programmer

 $1, 0 \times 2^{\circ} \longrightarrow 5=0, E=0111 1111, M=0...0$

```
f1 = 0 \ge 0/011 |111 /000 0000 0000 0000 0000 = 0x3F8000000
#include <stdio.h>
                                             $ ./a.out
int main(int argc, char* argv[]) {
                                             0x3f800000 0x3f800001)
  float f1 = 1.0; specify float constant float f2 = 0.0;
                                             f1 = 1.00000000
                                             f2 = 1.00000119
  int i;
  for (i = 0; i < 10; i++)
                                             f1 == f3? yes
    f2 += 1.0/10.0;
    f2 should == 10 \times \frac{1}{10} = 1
  printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
  printf("f1 = %10.9f\n", f1);
  printf("f2 = %10.9f\n\n", f2);
                                              (see float.c)
  f1 = 1E30; |0^{3\circ}|
  f2 = 1E - 30; 10^{-30}
  float f3 = f1 + f2;
  printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
          |0^{30} = = |0^{30} + |0^{-30}
  return 0;
```

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (*e.g.* 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Number Representation Really Matters

- **1991:** Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- * 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - Iimited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- Other related bugs:
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Roadmap

Architecture Sits at the Hardware Interface

Definitions

- Architecture (ISA): The parts of a processor design that one needs to understand to write assembly code
 - "What is directly visible to software"
- Microarchitecture: Implementation of the architecture
 - CSE/EE 469

Instruction Set Architectures

- The ISA defines:
 - The system's state (e.g. registers, memory, program counter)
 - The instructions the CPU can execute
 - The effect that each of these instructions will have on the system state

Instruction Set Philosophies

- Complex Instruction Set Computing (CISC): Add more and more elaborate and specialized instructions as needed
 - Lots of tools for programmers to use, but hardware must be able to handle all instructions
 - x86-64 is CISC, but only a small subset of instructions encountered with Linux programs
- Reduced Instruction Set Computing (RISC): Keep instruction set small and regular
 - Easier to build fast hardware
 - Let software do the complicated operations by composing simpler ones

General ISA Design Decisions

- Instructions
 - What instructions are available? What do they do?
 - How are they encoded?
- Registers
 - How many registers are there?
 - How wide are they?
- Memory
 - How do you specify a memory location?

Mainstream ISAs

(intel)		
x86		
Designer	Intel, AMD	
Bits	16-bit, 32-bit and 64-bit	
Introduced	1978 (16-bit), 1985 (32-bit), 2003 (64-bit)	
Design	CISC	
Туре	Register-memory	
Encoding	Variable (1 to 15 bytes)	
Endianness	Little	

Macbooks & PCs (Core i3, i5, i7, M) <u>x86-64 Instruction Set</u>

ARM architectures

Designer	ARM Holdings
Bits	32-bit, 64-bit
Introduced	1985; 31 years ago
Design	RISC
Туре	Register-Register
Encoding	AArch64/A64 and AArch32/A32 use 32-bit instructions, T32 (Thumb-2) uses mixed 16- and 32-bit instructions. ARMv7 user- space compatibility ^[1]

Endianness Bi (little as default)

Smartphone-like devices (iPhone, iPad, Raspberry Pi) <u>ARM Instruction Set</u>

MIPS

Designer	MIPS Technologies, Inc.
Bits	<mark>64-bit</mark> (32→64)
Introduced	1981; 35 years ago
Design	RISC
Туре	Register-Register
Encoding	Fixed
Endianness	Bi

Digital home & networking equipment (Blu-ray, PlayStation 2) <u>MIPS Instruction Set</u>

Summary

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types *does* change the bits
- x86-64 is a complex instruction set computing (CISC) architecture