
CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point II, x86-64 Intro
CSE 351 Winter 2019

http://xkcd.com/899/

Instructors:
Max Willsey

Luis Ceze

Teaching Assistants:
Britt Henderson

Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky

Luis Vega

Kory Watson

Ivy Yu

http://xkcd.com/257/

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Administrivia
v Lab 1b due Friday (1/25)

§ Submit bits.c and lab1Breflect.txt

v Homework 2 due next Friday (2/1)
§ On Integers, Floating Point, and x86-64

v Section tomorrow on Integers and Floating Point

2

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Denorm Numbers
v Denormalized numbers (E = 0x00)

§ No leading 1

§ Uses implicit exponent of –126

v Denormalized numbers close the gap between zero
and the smallest normalized number
§ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

§ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

3

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Other Special Cases
v E = 0xFF, M = 0: ± ∞

§ e.g. division by 0

§ Still work in comparisons!

v E = 0xFF, M ≠ 0: Not a Number (NaN)

§ e.g. square root of negative number, 0/0, ∞–∞

§ NaN propagates through computations

§ Value of M can be useful in debugging

v New largest value (besides ∞)?

§ E = 0xFF has now been taken!

§ E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

4

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating point topics
v Fractional binary numbers
v IEEE floating-point standard
v Floating-point operations and rounding
v Floating-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

6

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Tiny Floating Point Representation
v We will use the following 8-bit floating point

representation to illustrate some key points:

v Assume that it has the same properties as IEEE
floating point:
§ bias =
§ encoding of −0 =
§ encoding of +∞ =
§ encoding of the largest (+) normalized # =
§ encoding of the smallest (+) normalized # =

7

S E M
1 4 3

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Peer Instruction Question
v Using our 8-bit representation, what value gets

stored when we try to encode 2.625 = 21 + 2-1 + 2-3?

A. + 2.5
B. + 2.625
C. + 2.75
D. + 3.25
E. We’re lost…

8

S E M
1 4 3

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Peer Instruction Question
v Using our 8-bit representation, what value gets

stored when we try to encode 384 = 28 + 27?

A. + 256
B. + 384
C. + ∞
D. NaN
E. We’re lost…

9

S E M
1 4 3

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Distribution of Values
v What ranges are NOT representable?

§ Between largest norm and infinity
§ Between zero and smallest denorm
§ Between norm numbers?

v Given a FP number, what’s the bit pattern of the next
largest representable number?
§ What is this “step” when Exp = 0?
§ What is this “step” when Exp = 100?

v Distribution of values is denser toward zero

10

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)
Underflow (Exp too small)
Rounding

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point Rounding
v The IEEE 754 standard actually specifies different

rounding modes:

§ Round to nearest, ties to nearest even digit

§ Round toward +∞ (round up)

§ Round toward −∞ (round down)

§ Round toward 0 (truncation)

v In our tiny example:

§ Man = 1.001 01 rounded to M = 0b001

§ Man = 1.001 11 rounded to M = 0b010

§ Man = 1.001 10 rounded to M = 0b010

11

This is extra

(non-testable)
material

S E M
1 4 3

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point Operations: Basic Idea

v x +f y = Round(x + y)
v x *f y = Round(x * y)

v Basic idea for floating point operations:
§ First, compute the exact result
§ Then round the result to make it fit into the specificed

precision (width of M)
• Possibly over/underflow if exponent outside of range

12

S E M
Value = (-1)S×Mantissa×2Exponent

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Mathematical Properties of FP Operations
v Overflow yields ±∞ and underflow yields 0
v Floats with value ±∞ and NaN can be used in

operations
§ Result usually still ±∞ or NaN, but not always intuitive

v Floating point operations do not work like real math,
due to rounding
§ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)

0 3.14

§ Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
30.000000000000003553 30

§ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

13

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating point topics
v Fractional binary numbers
v IEEE floating-point standard
v Floating-point operations and rounding
v Floating-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

14

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point in C
v Two common levels of precision:
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

v #include <math.h> to get INFINITY and NAN
constants

v Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

15

!!!

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point Conversions in C
v Casting between int, float, and double changes

the bit representation
§ int → float

• May be rounded (not enough bits in mantissa: 23)
• Overflow impossible

§ int or float → double
• Exact conversion (all 32-bit ints representable)

§ long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

§ double or float → int
• Truncates fractional part (rounded toward zero)
• “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
16

!!!

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Peer Instruction Question
v We execute the following code in C. How many bytes

are the same (value and position) between i and f?

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We’re lost…

17

int i = 384; // 2^8 + 2^7
float f = (float) i;

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point and the Programmer

18

#include <stdio.h>

int main(int argc, char* argv[]) {
float f1 = 1.0;
float f2 = 0.0;
int i;
for (i = 0; i < 10; i++)

f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf("f1 = %10.9f\n", f1);
printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Floating Point Summary
v Floats also suffer from the fixed number of bits

available to represent them
§ Can get overflow/underflow
§ “Gaps” produced in representable numbers means we can

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

v Floating point arithmetic not associative or
distributive
§ Mathematically equivalent ways of writing an expression

may compute different results

v Never test floating point values for equality!
v Careful when converting between ints and floats!

19

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Number Representation Really Matters
v 1991: Patriot missile targeting error

§ clock skew due to conversion from integer to floating point

v 1996: Ariane 5 rocket exploded ($1 billion)
§ overflow converting 64-bit floating point to 16-bit integer

v 2000: Y2K problem
§ limited (decimal) representation: overflow, wrap-around

v 2038: Unix epoch rollover
§ Unix epoch = seconds since 12am, January 1, 1970

§ signed 32-bit integer representation rolls over to TMin in 2038

v Other related bugs:
§ 1982: Vancouver Stock Exchange 10% error in less than 2 years

§ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

§ 1997: USS Yorktown “smart” warship stranded: divide by zero

§ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
20

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Roadmap

21

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

C Language

Architecture Sits at the Hardware Interface

22

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Definitions
v Architecture (ISA): The parts of a processor design

that one needs to understand to write assembly code
§ “What is directly visible to software”

v Microarchitecture: Implementation of the
architecture
§ CSE/EE 469

23

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Instruction Set Architectures
v The ISA defines:

§ The system’s state (e.g. registers, memory, program
counter)

§ The instructions the CPU can execute
§ The effect that each of these instructions will have on the

system state

24

CPU

MemoryPC

Registers

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Instruction Set Philosophies
v Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed
§ Lots of tools for programmers to use, but hardware must be

able to handle all instructions
§ x86-64 is CISC, but only a small subset of instructions

encountered with Linux programs
v Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular
§ Easier to build fast hardware
§ Let software do the complicated operations by composing

simpler ones
25

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

General ISA Design Decisions
v Instructions

§ What instructions are available? What do they do?
§ How are they encoded?

v Registers
§ How many registers are there?
§ How wide are they?

v Memory
§ How do you specify a memory location?

26

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Mainstream ISAs

27

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking
equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

CSE351, Winter 2019L07: Floating Point II, x86-64 Intro

Summary
v Floating point encoding has many limitations

§ Overflow, underflow, rounding
§ Rounding is a HUGE issue due to limited mantissa bits and

gaps that are scaled by the value of the exponent
§ Floating point arithmetic is NOT associative or distributive

v Converting between integral and floating point data
types does change the bits

v x86-64 is a complex instruction set computing (CISC)
architecture

28

