WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

Floating Point Il, x86-64 Intro

CSE 351 Winter 2019

CSE351, Winter 2019

Instructors: Teaching Assistants: Daniel Snitkovsky
Max Willsey Britt Henderson Luis Vega
Luis Ceze Lukas Joswiak Kory Watson
Josie Lee lvy Yu
Wei Lin
0.95 (AcTUALY NUMBER INDIGATING ~ IFYOU ENCOUNTER
0.0000000372 FORBIODEN ~ GIRD-AKEFEDAS pFACTOIO 15 MADEUP A NUMBER HIGHER
LESSTHAN 1) REGION CANON BY ORHODOX (“e/ERY 7 vemrs..; ‘suce THAN THIS, YOU'RE
‘ e T MAHEMATCUANS __ -~ . SAYS THERE NOT DoG REAL MATH
/, / - ME? 5 EO
+ - — J H } + 'UNEXPLORED - ; —+ y
-1 O 1 2 [3 Q HH g 7 8 9 10
STEOF ,
"IMITATOR” SUNFLOWERS (e AND 1T, OF L1108 EVEN PRIME
NUMBERS GOLDEN RATIQ OBSERVED) '
(DONOTUSE) WAIT COME BRCK.
T HAVE FACTS!

http://xkcd.com/899/

http://xkcd.com/257/

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Administrivia

+» Lab 1b due Friday (1/25)
" Submitbits.cand lablBreflect.txt

+» Homework 2 due next Friday (2/1)
" On Integers, Floating Point, and x86-64

% Section tomorrow on Integers and Floating Point

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

This is extra

Denorm Numbers (non-testable)

material

+ Denormalized numbers (E = 0x00)
"= No leading 1
= Uses implicit exponent of —126

+» Denormalized numbers close the gap between zero

and the smallest normalized number

So much
. - 126 — + 9-126
Smallest norm: * 1.0...0,,,%2 +2 — closerto 0

" Smallest denorm: + 0.0...01,,,,%x21%2° = £ 2°149

- There is still a gap between zero and the smallest denormalized
number

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Other Special Cases

« E=0XFF, M =0: o
- m e.g. division by O

0\\\ br\QS

\ " Still work in comparisons!

+ E=0xFF, M #0: Not a Number (NaN)
" e.g. square root of negative number, 0/0, co—co
= NaN propagates through computations
= Value of M can be useful in debugging (4cl\s yon Couse oF NaJ\))

+» New largest value (besides =0)?

= E = 0OxFF has how been ’g}aken!
ones

" E= OxFLE has largest: 1.1...1,x2127 = 2128 _ 104
i ZBL’I‘BYA_; -

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating Point Encoding Summary

Meaning
gmallest E 0x00 0 t0
Cav o) 0x00 non-zero + denorm num
cv:(:/*c“""){ Ox01 — OxFE anything + norm num
o E J OXFF 0 t oo
Ca\\ as) OxFF non-zero NaN

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating point topics

+» Fractional binary numbers
|IEEE floating-point standard

/
000

Floating-point operations and rounding

/
000

Floating-point in C

/
000

There are many more details that we won’t cover

/
000

" |t's a 58-page standard...

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Tiny Floating Point Representation

+» We will use the following 8-bit floating point
representation to illustrate some key points:

S E M
1 4 3

+» Assume that it has the same properties as IEEE
floating point:

pias= 2"'-1 =2"-1= 7

encodingof —0= O ¢ m O =0x]0

encoding of +co =L O 111/1 000 = O F8&

encoding of the largest (+) normalized #= 0L 0 111%) 111 =Ox74
encoding of the smallest (+) normalized # =k O OOO/l 000=0x03

7

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Peer Instruction Question

+» Using our 8-bit representation, what value gets
stored when we try to encode 2.625 = 21 + 21 + 2-37

S E M h"2 (l&-\-z _),2 l{)
1 A 3 = ’2 X 1. DLOL
o
| E = Exp+ bias
A. =L+ 7 =8
B. +2.625 = Ob 1000
C. +2.75 M=0b 610/L
D. + 3-25 t—— Con br\\y .s"bt@
'bl:?\rs.’
E. We're lost...

Shred as [Ob O_100D 010 = 1.5

WA UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Peer Instruction Question

+» Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28+ 27?=2"(1+2%)

+ 384
+ 00 /
NaN

O w P

o |

We’re lost...

— 3
s| E m | - <Ll
1 4 3 $=0
‘E.':' EXP‘HQT&S
= g+ #=15

T
this falls sutside ofthe
noYmalTZ el €xpon ent rongt .

i mumber isto large, sv we shove
[+50 <= 0L O 1114 00D
ir\s‘t‘eM

CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

CSE351, Winter 2019

Distribution of Values

+» What ranges are NOT representable?

= Between largest norm and infinity Overflow (Exp too large)

= Between zero and smallest denorm Underflow (Exp too small)
= Between norm numbers? Rounding

% Given a FP number, what’s the bit pattern of the next

F M=050...00, then 25¢x1 .0
largest representable number? m-ovo. o1 .. 2&,,%&,,2-23)
= What is this “step” when Exp =0? 27 o = P23

= What is this “step” when Exp = 100? 27

« Distribution of values is denser toward zero

overflou r u»ndcr-F(w Mi“‘g (over"F low
L7 Y MMMM#AK—/FA—A—r |
15 110 5 0 5 o 15

¢ Denormalized A Normalized Infinity

10

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

. . . This is extra
Floating Point Rounding (non-testable)

material

» The IEEE 754 standard actually specifies different
rounding modes:
<8 Round to nearest, ties to nearest even digit
= Round toward +o0 (round up)
= Round toward —oo (round down)
= Round toward O (truncation)

- In our tiny examplew: S E M
A

= Man =1. 001/01 rounded toM=0b001 1
" Man=1. 001/11 rounded to M =0b010

— —

/——

= Man =1. 001/10 rounded toM = ObOlCS,Qm g
Man = 1.000/10 ramged 4o M =0b 00

N
W

11

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

Floating Point Operations: Basic Idea

={-1) xMantissax2Fronent

E M 5

» X + y = Round(x + V)

» X *. y = Round(x * vy)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into the specificed
precision (width of M)

 Possibly over/underflow if exponent outside of range

CSE351, Winter 2019

12

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Mathematical Properties of FP Operations

% Overflow yields +00 and underflow yields 0

+ Floats with value +-co and NaN can be used in
operations
= Result usually still 00 or NaN, but not always intuitive

+ Floating point operations do not work like real math,

due to rounding 15" 5
= Not associative: (3.14+1e100)-1e100 !'= 3.14+(1el00-1e100)
0 3.14
= Not distributive: 100%(0.1+0.2) != 100*0.1+100%0.2
30.000000000000003553 30

= Not cumulative

- Repeatedly adding a very small number to a large one may do nothing

13

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating point topics

+» Fractional binary numbers
+ |EEE floating-point standard

+» Floating-point operations and rounding
+ Floating-point in C

There are many more details that we won’t cover

/
000

" |t's a 58-page standard...

14

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating Point in C

+» Two common levels of precision:
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

e« #include <math.h> to get INFFINITY and NAN
constants <Floxt.h> H atdhonal conctants

+» Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

intesd wse abs(FL-F2) 27

Some arL;'\f‘ary "H\YejLW\A 15

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating Point Conversions in C ! ! !

+» Casting between int, float, and double changes
the bit representation

" int —» float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

" intorfloat — double

- Exact conversion (all 32-bit ints representable)

" long — double

- Depends on word size (32-bit is exact, 64-bit may be rounded)

" doubleorfloat — int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
16

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Peer Instruction Question

+» We execute the following code in C. How many bytes
are the same (value and position) between 1 and £?

T LY oy L 1 0
int 1 = 384; // 278 + 2°7|= Ob I 0000000
float £ = (float) 1; - 14, x 98
. $=0
A.] E=§+127F = 135
B. 1byte = 0b1 000 0111
C. 2 bytes M=0k10..0
D. 3 bytes o 1000 ouA 1opy.0
, 1 shrd a5 Ox 00 00 01 g0
E. We'relost... £ s as Ox 42 CO 00 OO

17

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating Point and the Programmer

1. 0x2°— $§=0, E=01 lIl|,"=0...0
#include < > F1= 0b o/on i /ooo o000 00y ook 000 = Ox3FF000dv
$./a.out

int main(int argc, char* argv[]) ({
float f1 = 1.0; Ox3f800000 0x3£800001§

-l speeity Float congunt £1 = 1.000000000
SIS 2is B Mo £2 = 1.000000119
int 1;
for (1 = 0; 1 < 10; i++)
£2 += 1.0/10.0;
£ shoald == 10x15=|

fl == £3? yes

printf ("0x%$08x %$08x\n", *(int*) &fl, *(int*) &f2) ;
printf (" $10.9£f\n", f£1);
printf (" $10.9£f\n\n", £2);

Llod-¢

fl = 1E30; ‘03" sec

f2 = 1E-30;|0*°

float £3 = £f1 + £2;

printf (" $s\n", f1 == £3 ? " "o. "po") ;
’o'so _— Io‘so_l_ ID-%

return O;

18

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Floating Point Summary

« Floats also suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike ints
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+» Floating point arithmetic not associative or

distributive

= Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between ints and floats!

19

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Number Representation Really Matters

» 1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

» 1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

+~ 2000: Y2K problem

" |imited (decimal) representation: overflow, wrap-around
» 2038: Unix epoch rollover
= Unix epoch = seconds since 12am, January 1, 1970
= signed 32-bit integer representation rolls over to TMin in 2038
» Other related bugs:
= 1982: Vancouver Stock Exchange 10% error in less than 2 years
= 1994: Intel Pentium FDIV (floating point division) HW bug (S475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
20

WA UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Roadmap

CSE351, Winter 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)) ; Car ¢ = new Car () Integers & floats
c->miles 100; c.setMiles (100); x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg get mpg(c) ; float mpg = Executables
free(c); C.getMPG () ; Arrays & structs
— —— Memory & caches
Assembly get_mpg: Processes
. pushqg Srbp .

language: mova crsp, Srbp Virtual memory

.. Memory allocation

popq srbp Java vs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A \
coae: 1000100111000010)
110000011111101000011111 Windows 10 | 0S X Yosemite 0
i |
v v

Computer
system:

21

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Architecture Sits at the Hardware Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Pifferent |
or algorithms generate instructions implementations
T ~ Intel Pentium 4
. C Language :
. . I , .
: Pro : we Wil be Wfing N Intel Core 2
: gram R ;
A ' '
l GCC . Xx86-64 . Intel Core i7
| T— |
I —————————— =4
| T
\ | Program : AMD Opteron
! |
l B
: AMD Athlon
: Clang
|
: Your ; - - —— - |
| program l | '
Rk | AR ARM Cortex-A53
. , ' (AArch64/A64) :
e e e —_ J
Apple A7

22

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture

= CSE/EE 469

23

WA UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Instruction Set Architectures

«» The ISA defines:

= The system’s state (e.g. registers, memory, program

counter)

" The instructions the CPU can execute

CSE351, Winter 2019

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

24

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Instruction Set Philosophies

«» Complex Instruction Set Computing (CISC): Add more
and more elaborate and specialized instructions as
needed

= |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

% Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular
= Easier to build fast hardware

= |et software do the complicated operations by composing
simpler ones

25

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

General ISA Design Decisions

< |nstructions

= What instructions are available? What do they do?
= How are they encoded?

+» Registers
= How many registers are there?
= How wide are they?

< Memory

= How do you specify a memory location?

CSE351, Winter 2019

26

WA UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Mainstream ISAs

intel.

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

Design CISC
Type Register-memory
Encoding Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5,i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings
Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibility[ﬂ

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

CSE351, Winter 2019

MIES

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

27

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/MIPS_Green_Sheet.pdf

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Winter 2019

Summary

+ Floating point encoding has many limitations
= QOverflow, underflow, rounding

= Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

® Floating point arithmetic is NOT associative or distributive

+» Converting between integral and floating point data
types does change the bits

+» X86-64 is a complex instruction set computing (CISC)
architecture

28

