WA UNIVERSITY of WASHINGTON

Data lll & Integers |

CSE 351 Winter 2019

LO4: Integers |

CSE351, Winter 2019

hello.

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants:
Britt Henderson
Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky
Luis Vega

ALATH,  DONEHLINY,
DONEHLINI, ~ ALA'IH,
ALAH, DONEHLWI,
DONEHLINI DONEHLINI,
ALATH, ALAIH,
DONEHLINL -~ ALATH,
DONEHLINI, DONEHLINL,
DONEHLINI

3

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVATO CODE TALKER.

... IS HE JUST USING
NAVATO WORDS FOR
'ZERO' AND "ONE"?

WHOA, HEY, KEEP
YOUR vow;E DOWN!

M\J

Kory Watson
lvy Yu

http://xkcd.com/257/



http://xkcd.com/257/

CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON LO4: Integers |

Administrivia

+» Lab O due tonight, HW 1 on Wednesday

«» Lab 1la released
= \Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors & warnings
)

3) Run ptest (. /ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py)and check output =“[]”
= Due Wed 1/23, will overlap with Lab 1b

- We grade just your last submission



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Lab Reflections

+ All subsequent labs (after Lab 0) have a “reflection”
portion

= The Reflection questions can be found on the lab specs and
are intended to be done after you finish the lab

= You will type up your responses in a . txt file for
submission on Canvas

= These will be graded “by hand” (read by TAs)

% Intended to check your understand of what you
should have learned from the lab

= Also great practice for short answer questions on the exams



CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON L04: Integers |

Memory, Data, and Addressing

+» Representing information as bits and bytes
+» QOrganizing and addressing data in memory
+» Manipulating data in memory using C

+» Strings

+» Boolean algebra and bit-level manipulations



WA UNIVERSITY of WASHINGTON

LO4: Integers |

Representing strings

CSE351, Winter 2019

+ C-style string stored as a sequence of bytes (char¥*)

= Elements are one-byte ASCII codes for each character

= No “String” keyword, unlike Java

32
33
34

35
36

37
38
39
40
41
42
43
44
45
46
47

space
!
”
#

$
%

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

OO NGOV BAWNERO

- V 1] N S e

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

OZ2ZEErX=—«—=—IOmMMOO ®®D>ER

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

S -~ N<XS<C-HwxQ0 D

96
97
98

99
100

101
102
103
104
105
106
107
108
109
110
111

5 3 — X = = 0@ -~0D Q0 T Q

o

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

"~ —~ N X S € C +# 0 =~ O T

del

ASCIl: American Standard Code for Information Interchange



Decimal:

N

WA UNIVERSITY of WASHINGTON

LO4: Integers |

Null-Terminated Strings

CSE351, Winter 2019

+» Example: ”Life is good" stored as a 13-byte array

% Last character followed by a O byte (' \0 ')
(a.k.a. "null terminator")

+» How do we compute the length of a string?

" Traverse array until null terminator encountered

= Must take into account when allocating space in memory
= Notethat '0' # '\O"' (i.e. character O has non-zero value)

76)| 105| 102| 101 105| 115| 32 {103 111{111| 100| 0
Oxak| bx69] 0x66| 0x65 0x69| 0x73| 0x20| 0x67| Ox6f| 0x6f| Ox64| 0x00
@ i f e i S g 0 0 d

%




WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

strlen() o
char ¥ = 70@)

char s[5] = “tog”;
int n = strlen(s);




WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Examining Data Representations

+» Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char*
® Chasunchecked casts !l DANGER !!

void show_bytes@ start, @) {

int 1;
for (1 = 0; .1 < len; 1++)
printf ("Sp\t0x%.2x\n", start+i, *(start+i));

—

printf ("\n");

}

printf directives:
P Print pointer
\t Tab
$x  Print value as hex
\n Newline




WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Boolean Algebra

+» Developed by George Boole in 19th Century

= Algebraic representation of logic (True — 1, False — 0)
= AND: A&B=1 whenboth AislandBis1

= OR: A |B=1 wheneitherAislorBis1
= XOR: A”B=1 when either Ais1 orBis 1, but not both
= NOT: ~A=1 when A is 0 and vice-versa
= DeMorgan’s Law: FIA|B) = A & 7B
~(A&B) = ~A | ~B
AND OR XOR NOT
& |0 1 1 |0 1 ~lo 1 ~
0|l0 o 0|0 1 0 |0 1 0 |1
110 1 11 1 1|1 @) 1 (0




CSE351, Winter 2019

WA UNIVERSITY of WASHINGTON L04: Integers |

General Boolean Algebras

+» Operate on bit vectors
= Operations applied bitwise
= All of the properties of Boolean algebra apply

01101001 01101001 01101001
& 01010101 ] 01010101 ~ 01010101 ~ 01010101
§sorop| SRR (C A S

+» Examples of useful operations:

01010101
x ™ =0 ~ 101010101
00000000

Oxﬁo
dmotp1oD

| f111j0000 &
(f11Np1o01

f

=
p—

1

=
S

1

0

10



WA UNIVERSITY of WASHINGTON

LO4: Integers |

Bit-Level Operations in C

+ & (AND),

| (OR),

* (XOR),

CSE351, Winter 2019

= \View arguments as bit vectors, apply operations bitwise

= Apply to any “integra

IH

data type

- long, 1nt, short, char, unsigned

+» Examples with char a,
(char) 0x41;

" a

b

Q O Y Q O v

(char)

(char)

a

& by

(char)

a

/\b;

0x09;
0x55;

O0x41;

//
//

//
//
//

//
//
//

~ (NOT)

b, c;
0x41->0b 0100 0001

Ob (o1 ( ([D->0x
0x69->0b 0110 1001
0x55->0b 0101 0101

op C1°0 eeni 50k
0x41->0b 0100 0001

0b 0100 0001

Ob (fffs ~>0x

11



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Contrast: Logic Operations

» Logical operators in C: && (AND), | | (OR I (NOT)

= Qis False, anything nonzero is True 6
= Always returnOor1 C >
= Early terimmatlon (a.k.a. short circuit evaluatlon) of &&, | |
. int x = (42 == 6) || boom(); 5
- 1nt yv = (42 == 6) && boom(); ><
(k4f%:F>[(C§§
» Examples (char data type)

= 10x41 -> 0x00 " OxCC && 0x33 -> 0x01

= I10x00 -> O0Ox01 " Ox00 || Ox33 -> 0x01
= 110x41 -> O0x01

12



WA UNIVERSITY of WASHINGTON

Roadmap

LO4: Integers |

CSE351, Winter 2019

Memory & data

C: Java:

car *c = malloc(sizeof (car)) ; Car ¢ = new Car ()
c->miles = 100; c.setMiles (100);
c->gals = 17; c.setGals (17);

float mpg ;_get_mpg(c);

float mpg =

Integers & floats
x86 assembly
Procedures & stacks
Executables

free (c); c.getMPG() ; Arrays & structs
N — Memory & caches
Assembly get mpg: Processes
language: pushg Srbp Virtual memory
movq Srsp, Memory allocation
o . Javavs. C
pPopq ©
ret
OS:
Machine 0111010000011000 \/
code: 100011010000010000000010 \
' 1000100111000010 /\ |
110000011111101000011111 . ~
Windows 10 ; OS X Yosemite I\A/
\
Computer
system:

13




WA UNIVERSITY of WASHINGTON

LO4: Integers |

But before we get to integers....

Encode a standard deck of playing cards

52 cards in 4 suits

" How do we encode suits, face cards?

CSE351, Winter 2019

What operations do we want to make easy to implement?

= Which is the higher value card?
= Are they the same suit?

P
4 2o B [fesias[lea 14.*& 24.*4. 24.4.'!,'34.*&
+ » s s [t o[22 '
) # # # * * @ * ™ [ )
o 5 e ¥ b wi| b vl b okl b wF| bRl kel e}
4 o 30 [ioo;oalieas Io‘o Eo‘o 3o & [Ja0
' Iy N BRI RN B bl gl
v v v v v v v v v «¥e*
3 o3 o ool veol ool ool ool vl oo
A 2w [3v |[ivw|ivew|ive Zv.v Ev.v ve '30,0
v v v [vo|ve|ve|[%|YY
o || an
S el &Y aal aall aall aall aal o el o)
A 2 o 130 (e e ]300 [0 0 Zo’o §0.0 Je 0'@0.0
¢ ¢ N KX KXY KX PO I
°
of ¢ 3 ¢ [ e ef & el 6 el & 4] e 03 ¢ 02 o7




WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Two possible representations
M K&
1) 1 bit pér card (52): bit corresponding to card setto 1 é

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
low-order 52 bits of 64-bit word ]
\\

= “One-hot” encoding (similar to set notation)
= Drawbacks:

- Hard to compare values and suits

- Large number of bits required

2) 1 bit per suit@lbit per number@wz bjts set \i
IIIIIIIIIIIIIIIIII|IIIIIIIIIII|IIIIIIIIIIIIIIIIII%IIIIIIIIIII

13 numbers

= Pair of one-hot encoded values 4 suits

= Easier to compare suits and values, but still lots of bits used

15



WA UNIVERSITY of WASHINGTON LO4: Integers |

Two better representations

CSE351, Winter 2019

3) Binary encoding of all 52 cards — only 6 bits needed

= 26 =64 >752
-

i low-order 6 bits of a b&/te
2 T3 Lo ]

" Fits in one byte (smaller than one-hot encodings)

= How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and.

(4 bits) Y 3 /TS A0

value

SUItC

1

= Also fits in one byte, and easy to do comparisons

K Q J 3 2 A

N—

/1101})1100|1011| ... |0011{0010|Q@00L}

i

value

* |60,
¢ 01)
v [10]
o 11

16



WA UNIVERSITY of WASHINGTON

Compare Card Suits

char hand|[5];

char cardl, card2; // tw
cardl = hand[0];

—————— -—

card2 = hand[1l];

i1f ( 1sSameSuit (cardl,

LO4: Integers |

CSE351, Winter 2019

mask: a bit vector designed to achieve a desired

behavior when used with a bitwise operator on
another bit vector v.

Here we turns all but the bits of interest in v to 0.

// reprkesents a 5-card hand

cards to compare

card2) ) { <.« }

#define SUIT MASK 0x30

int isSameSuit (char cardl,

char card2?2) {

) -

Yifturn (cardl & SUIT_MASK
}

(card2 & SUIT MASK) ;

\

returns:intJ

SUIT_MASK = 0x30 =

e

17



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on

Compare Card Suits another bit vector v.

Here we turns all but the bits of interest in v to 0.

#define SUIT MASK 0x30

int isSameSuit (char cardl, char card?2) {
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

// return (cardl & SUIT MASK) == (card2 & SUIT MASK) ;
}

R ‘¢ O )
ojofjoj1fo|0|1]0O ojofjof1f1(1]0]1
& —— — L = &
o(oj1|1|0|0|0|0O| SUIT MASK |O0|O|1|1|0]|0|0]O

0101010 01010
. NS
[@y) e\buivalent to x==y i7 \_’/
0101010101010 1

18



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

mask: a bit vector designed to achieve a
desired behavior when used with a

COm pa re Ca rd Va I ues bitwise operator on another bit vector v.

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if ( greaterValue(cardl, card2) ) { ... }

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2?) {
return ((unsigned char) (cardl & VALUE_MASK) ()
(unsigned char) (card2 & VALUE MASK));

VALUE_MASK =0x0F =|0|0]|0f0|1f1]|1]1

- value
suit 19



WA UNIVERSITY of WASHINGTON LO4: Integers |

CSE351, Winter 2019

mask: a bit vector designed to achieve a
desired behavior when used with a

COm pa re Ca I‘d Va I ues bitwise operator on another bit vector v.

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2?)

{

return ((unsigned 1int) (cardl & VALUE MASK)
(unsigned int) (card2 & VALUE MASK));

>

i e o=
010(1]1010|0([1]0 010110 1 1
’ X0
& L : &
0(0{0|0|21|1|1|1| VALUE MASK |0|0|0]0 1 1
0{010(0J0|0]11{0 01]0(0]0 1 1
210 > 1310

0O (false)

20



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Integers

<~ Binary representation of integers
= Unsigned and signhed
= Castingin C

+» Consequences of finite width representation

= QOverflow, sign extension

+ Shifting and arithmetic operations

21



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Encoding Integers

+» The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
= signed — both negatives and non-negatives

+» Cannot represent all integers with w bits
= Only 2% distinct bit patterns

" Unsigned values: @)
= Signed values: @

+» Example: 8-bit integers (e.g. char)

L

-00 < v > +00
128 ‘0 PEve CqZ56 )
—28-1 0 +28-1 +28

22



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Unsigned Integers

+» Unsigned values follow the standard base 2 system
" b7b6b5b4b3b2b1b0 —_ b727 + b626 + -+ b121 + boZO

+» Add and subtract using the normal “carry” and
“borrow” rules, just in binary

63 00111111
+ 8| |+00001000 K=Y
71 01000111

« Useful formula: N onesin arow

+» How would you make signed integers?

23



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Signh and Magnitude

[Most Significant Bit]
=
+» Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; sign=1: negative numbers

« Benefits:

= Using MSB as sign bit matches positive numbers with
unsigned

= All zeros encoding is still =0
+» Examples (8 bits):
= 0x00 =(00000000, is non-negative, because the sign bitis 0

= 0x7F %01111111, is non-negative (+127,,)
" 0x85 =@DOOO;OJZ is negative (-5,()
= 0x80 = 10000000, is negative... zero???

24



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Signh and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks?

15 0

1111 0000
1110
1101

1100

14

1111
1110
1101

1100

0000
0001
0010

0011

13

12

Unsigned Sign and

Magnitude
1111011 0100 [ 4 _3\1011 0100

1010 1010
1001 1001
1000 1000

—_—

0111 0111

25



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Signh and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)
-7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
5 1011 Magnitude 0100

1010
1001

1000 0111

26



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Signh and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)

= Arithmetic is cumbersome -7 +0
- Example: 4-3 = 4+ (-3) 1111 0000
_s / 1110 0001 \ + 2
4 0100 4 0100 4 1101 0010 .+ 3
e I STV
_g\to11  Magnitude  g109 |
v X 1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

27



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Two’s Complement

+» Let’s fix these problems:
1) “Flip” negative encodings so incrementing works

28



o0

o0

WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Two’s Complement

Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2¥"tto 2V —1) |11

29



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Two’s Complement Negatives

+» Accomplished with one neat mathematical trick!

b(w-1) has weight —2MW=1D ‘other bits have usual weights +2!

z/ I
bw-l bw-2 “l b0

" 4-bit Examples: _q +0
- 1010, unsigned:

1*2340*22+1*21+0*2° =10

- 1010, two’s complement: 1101 0010

J1%2340%2241%2140%20 = -6 ~4 [ 1100 Two's 0011

_ | 1011 Complement 0100

1010
1001
1000

1111
1110

0000
0001

= -1 represented as:
1111, =-23+(23-1)

- MSB makes it super negative, add up
all the other bits to get back up to -1

0111

30



CSE351, Winter 2019

LO4: Integers |

WA UNIVERSITY of WASHINGTON

Why Two’s Complement is So Great

4

Roughly same number of (+) and (—) numbers

%

00

Positive number encodings match unsigned

*

Simple arithmetic (x + -y = x—)

Single zero
All zeros encoding =0

Simple negation procedure:

" Get negative representation
of any integer by taking
bitwise complement and
then adding one!

(~x + 1 -X )

1111
1110

0000
0001
1101 0010

1100 TWo's 0011
_\1011 Complement 0100

1010
1001
1000

0111

31



WA UNIVERSITY of WASHINGTON

Peer Instruction Question

Take the 4-bit number encodingx = 0bl011
+» What’s it mean as an unsigned 4-bit integer?
W

nat about signed?

mooO®mPp
=
=

We’re lost...

CSE351, Winter 2019

32



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Summary

+ Bit-level operators allow for fine-grained
manipulations of data

= Bitwise AND (&), OR (| ), and NOT (~) different than logical
AND (&&), OR (| |), and NOT (!)

= Especially useful with bit masks

+» Choice of encoding scheme is important

" Tradeoffs based on size requirements and desired
operations

+ Integers represented using unsigned and two’s
complement representations

= Limited by fixed bit width
= We'll examine arithmetic operations next lecture

33



