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Administrivia

+» Lab O due tonight, HW 1 on Wednesday

«» Lab 1la released
= \Workflow:

1) Edit pointer.c
2) Run the Makefile (make) and check for compiler errors & warnings
)

3) Run ptest (. /ptest) and check for correct behavior
4) Run rule/syntax checker (python dlc.py)and check output =“[]”
= Due Wed 1/23, will overlap with Lab 1b

- We grade just your last submission
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Lab Reflections

+ All subsequent labs (after Lab 0) have a “reflection”
portion

= The Reflection questions can be found on the lab specs and
are intended to be done after you finish the lab

= You will type up your responses in a . txt file for
submission on Canvas

= These will be graded “by hand” (read by TAs)

% Intended to check your understand of what you
should have learned from the lab

= Also great practice for short answer questions on the exams
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Memory, Data, and Addressing

+» Representing information as bits and bytes
+» QOrganizing and addressing data in memory
+» Manipulating data in memory using C

+» Strings

+» Boolean algebra and bit-level manipulations
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Representing strings

CSE351, Winter 2019

+ C-style string stored as a sequence of bytes (char¥*)

= Elements are one-byte ASCII codes for each character

= No “String” keyword, unlike Java
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ASCIl: American Standard Code for Information Interchange
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Null-Terminated Strings

CSE351, Winter 2019

+» Example: ”Life is good" stored as a 13-byte array

% Last character followed by a O byte (' \0 ')
(a.k.a. "null terminator")

+» How do we compute the length of a string?

" Traverse array until null terminator encountered

= Must take into account when allocating space in memory
= Notethat '0' # '\O"' (i.e. character O has non-zero value)

76)| 105| 102| 101 105| 115| 32 {103 111{111| 100| 0
Oxak| bx69] 0x66| 0x65 0x69| 0x73| 0x20| 0x67| Ox6f| 0x6f| Ox64| 0x00
@ i f e i S g 0 0 d

%
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strlen() o
char ¥ = 70@)

char s[5] = “tog”;
int n = strlen(s);
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Examining Data Representations

+» Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char*
® Chasunchecked casts !l DANGER !!

void show_bytes@ start, @) {

int 1;
for (1 = 0; .1 < len; 1++)
printf ("Sp\t0x%.2x\n", start+i, *(start+i));

—

printf ("\n");

}

printf directives:
P Print pointer
\t Tab
$x  Print value as hex
\n Newline
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Boolean Algebra

+» Developed by George Boole in 19th Century

= Algebraic representation of logic (True — 1, False — 0)
= AND: A&B=1 whenboth AislandBis1

= OR: A |B=1 wheneitherAislorBis1
= XOR: A”B=1 when either Ais1 orBis 1, but not both
= NOT: ~A=1 when A is 0 and vice-versa
= DeMorgan’s Law: FIA|B) = A & 7B
~(A&B) = ~A | ~B
AND OR XOR NOT
& |0 1 1 |0 1 ~lo 1 ~
0|l0 o 0|0 1 0 |0 1 0 |1
110 1 11 1 1|1 @) 1 (0
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General Boolean Algebras

+» Operate on bit vectors
= Operations applied bitwise
= All of the properties of Boolean algebra apply

01101001 01101001 01101001
& 01010101 ] 01010101 ~ 01010101 ~ 01010101
§sorop| SRR (C A S

+» Examples of useful operations:

01010101
x ™ =0 ~ 101010101
00000000

Oxﬁo
dmotp1oD

| f111j0000 &
(f11Np1o01

f

=
p—

1

=
S

1

0
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Bit-Level Operations in C

+ & (AND),

| (OR),

* (XOR),

CSE351, Winter 2019

= \View arguments as bit vectors, apply operations bitwise

= Apply to any “integra

IH

data type

- long, 1nt, short, char, unsigned

+» Examples with char a,
(char) 0x41;

" a

b

Q O Y Q O v

(char)

(char)

a

& by

(char)

a

/\b;

0x09;
0x55;

O0x41;

//
//

//
//
//

//
//
//

~ (NOT)

b, c;
0x41->0b 0100 0001

Ob (o1 ( ([D->0x
0x69->0b 0110 1001
0x55->0b 0101 0101

op C1°0 eeni 50k
0x41->0b 0100 0001

0b 0100 0001

Ob (fffs ~>0x

11
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Contrast: Logic Operations

» Logical operators in C: && (AND), | | (OR I (NOT)

= Qis False, anything nonzero is True 6
= Always returnOor1 C >
= Early terimmatlon (a.k.a. short circuit evaluatlon) of &&, | |
. int x = (42 == 6) || boom(); 5
- 1nt yv = (42 == 6) && boom(); ><
(k4f%:F>[(C§§
» Examples (char data type)

= 10x41 -> 0x00 " OxCC && 0x33 -> 0x01

= I10x00 -> O0Ox01 " Ox00 || Ox33 -> 0x01
= 110x41 -> O0x01

12
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Memory & data

C: Java:

car *c = malloc(sizeof (car)) ; Car ¢ = new Car ()
c->miles = 100; c.setMiles (100);
c->gals = 17; c.setGals (17);

float mpg ;_get_mpg(c);

float mpg =

Integers & floats
x86 assembly
Procedures & stacks
Executables

free (c); c.getMPG() ; Arrays & structs
N — Memory & caches
Assembly get mpg: Processes
language: pushg Srbp Virtual memory
movq Srsp, Memory allocation
o . Javavs. C
pPopq ©
ret
OS:
Machine 0111010000011000 \/
code: 100011010000010000000010 \
' 1000100111000010 /\ |
110000011111101000011111 . ~
Windows 10 ; OS X Yosemite I\A/
\
Computer
system:

13
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But before we get to integers....

Encode a standard deck of playing cards

52 cards in 4 suits

" How do we encode suits, face cards?

CSE351, Winter 2019

What operations do we want to make easy to implement?

= Which is the higher value card?
= Are they the same suit?

P
4 2o B [fesias[lea 14.*& 24.*4. 24.4.'!,'34.*&
+ » s s [t o[22 '
) # # # * * @ * ™ [ )
o 5 e ¥ b wi| b vl b okl b wF| bRl kel e}
4 o 30 [ioo;oalieas Io‘o Eo‘o 3o & [Ja0
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Two possible representations
M K&
1) 1 bit pér card (52): bit corresponding to card setto 1 é

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
low-order 52 bits of 64-bit word ]
\\

= “One-hot” encoding (similar to set notation)
= Drawbacks:

- Hard to compare values and suits

- Large number of bits required

2) 1 bit per suit@lbit per number@wz bjts set \i
IIIIIIIIIIIIIIIIII|IIIIIIIIIII|IIIIIIIIIIIIIIIIII%IIIIIIIIIII

13 numbers

= Pair of one-hot encoded values 4 suits

= Easier to compare suits and values, but still lots of bits used

15
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Two better representations
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3) Binary encoding of all 52 cards — only 6 bits needed

= 26 =64 >752
-

i low-order 6 bits of a b&/te
2 T3 Lo ]

" Fits in one byte (smaller than one-hot encodings)

= How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and.

(4 bits) Y 3 /TS A0

value

SUItC

1

= Also fits in one byte, and easy to do comparisons

K Q J 3 2 A

N—

/1101})1100|1011| ... |0011{0010|Q@00L}

i

value

* |60,
¢ 01)
v [10]
o 11

16



WA UNIVERSITY of WASHINGTON

Compare Card Suits

char hand|[5];

char cardl, card2; // tw
cardl = hand[0];

—————— -—

card2 = hand[1l];

i1f ( 1sSameSuit (cardl,

LO4: Integers |
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mask: a bit vector designed to achieve a desired

behavior when used with a bitwise operator on
another bit vector v.

Here we turns all but the bits of interest in v to 0.

// reprkesents a 5-card hand

cards to compare

card2) ) { <.« }

#define SUIT MASK 0x30

int isSameSuit (char cardl,

char card2?2) {

) -

Yifturn (cardl & SUIT_MASK
}

(card2 & SUIT MASK) ;

\

returns:intJ

SUIT_MASK = 0x30 =

e

17
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mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on

Compare Card Suits another bit vector v.

Here we turns all but the bits of interest in v to 0.

#define SUIT MASK 0x30

int isSameSuit (char cardl, char card?2) {
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));

// return (cardl & SUIT MASK) == (card2 & SUIT MASK) ;
}

R ‘¢ O )
ojofjoj1fo|0|1]0O ojofjof1f1(1]0]1
& —— — L = &
o(oj1|1|0|0|0|0O| SUIT MASK |O0|O|1|1|0]|0|0]O

0101010 01010
. NS
[@y) e\buivalent to x==y i7 \_’/
0101010101010 1

18
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mask: a bit vector designed to achieve a
desired behavior when used with a

COm pa re Ca rd Va I ues bitwise operator on another bit vector v.

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if ( greaterValue(cardl, card2) ) { ... }

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2?) {
return ((unsigned char) (cardl & VALUE_MASK) ()
(unsigned char) (card2 & VALUE MASK));

VALUE_MASK =0x0F =|0|0]|0f0|1f1]|1]1

- value
suit 19
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mask: a bit vector designed to achieve a
desired behavior when used with a

COm pa re Ca I‘d Va I ues bitwise operator on another bit vector v.

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2?)

{

return ((unsigned 1int) (cardl & VALUE MASK)
(unsigned int) (card2 & VALUE MASK));

>

i e o=
010(1]1010|0([1]0 010110 1 1
’ X0
& L : &
0(0{0|0|21|1|1|1| VALUE MASK |0|0|0]0 1 1
0{010(0J0|0]11{0 01]0(0]0 1 1
210 > 1310

0O (false)

20



WA UNIVERSITY of WASHINGTON LO4: Integers | CSE351, Winter 2019

Integers

<~ Binary representation of integers
= Unsigned and signhed
= Castingin C

+» Consequences of finite width representation

= QOverflow, sign extension

+ Shifting and arithmetic operations

21
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Encoding Integers

+» The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives
= signed — both negatives and non-negatives

+» Cannot represent all integers with w bits
= Only 2% distinct bit patterns

" Unsigned values: @)
= Signed values: @

+» Example: 8-bit integers (e.g. char)

L

-00 < v > +00
128 ‘0 PEve CqZ56 )
—28-1 0 +28-1 +28

22
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Unsigned Integers

+» Unsigned values follow the standard base 2 system
" b7b6b5b4b3b2b1b0 —_ b727 + b626 + -+ b121 + boZO

+» Add and subtract using the normal “carry” and
“borrow” rules, just in binary

63 00111111
+ 8| |+00001000 K=Y
71 01000111

« Useful formula: N onesin arow

+» How would you make signed integers?

23
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Signh and Magnitude

[Most Significant Bit]
=
+» Designate the high-order bit (MSB) as the “sign bit”
" sign=0: positive numbers; sign=1: negative numbers

« Benefits:

= Using MSB as sign bit matches positive numbers with
unsigned

= All zeros encoding is still =0
+» Examples (8 bits):
= 0x00 =(00000000, is non-negative, because the sign bitis 0

= 0x7F %01111111, is non-negative (+127,,)
" 0x85 =@DOOO;OJZ is negative (-5,()
= 0x80 = 10000000, is negative... zero???

24
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Signh and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks?

15 0

1111 0000
1110
1101

1100

14

1111
1110
1101

1100

0000
0001
0010

0011

13

12

Unsigned Sign and

Magnitude
1111011 0100 [ 4 _3\1011 0100

1010 1010
1001 1001
1000 1000

—_—

0111 0111

25
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Signh and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)
-7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
5 1011 Magnitude 0100

1010
1001

1000 0111

26
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Signh and Magnitude

+» MSB is the sign bit, rest of the bits are magnitude
+» Drawbacks:

= Two representations of 0 (bad for checking equality)

= Arithmetic is cumbersome -7 +0
- Example: 4-3 = 4+ (-3) 1111 0000
_s / 1110 0001 \ + 2
4 0100 4 0100 4 1101 0010 .+ 3
e I STV
_g\to11  Magnitude  g109 |
v X 1010
- Negatives “increment” in wrong -2 1001 +5
direction!

1000 0111

27
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Two’s Complement

+» Let’s fix these problems:
1) “Flip” negative encodings so incrementing works

28
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Two’s Complement

Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2¥"tto 2V —1) |11

29
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Two’s Complement Negatives

+» Accomplished with one neat mathematical trick!

b(w-1) has weight —2MW=1D ‘other bits have usual weights +2!

z/ I
bw-l bw-2 “l b0

" 4-bit Examples: _q +0
- 1010, unsigned:

1*2340*22+1*21+0*2° =10

- 1010, two’s complement: 1101 0010

J1%2340%2241%2140%20 = -6 ~4 [ 1100 Two's 0011

_ | 1011 Complement 0100

1010
1001
1000

1111
1110

0000
0001

= -1 represented as:
1111, =-23+(23-1)

- MSB makes it super negative, add up
all the other bits to get back up to -1

0111

30
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Why Two’s Complement is So Great

4

Roughly same number of (+) and (—) numbers

%

00

Positive number encodings match unsigned

*

Simple arithmetic (x + -y = x—)

Single zero
All zeros encoding =0

Simple negation procedure:

" Get negative representation
of any integer by taking
bitwise complement and
then adding one!

(~x + 1 -X )

1111
1110

0000
0001
1101 0010

1100 TWo's 0011
_\1011 Complement 0100

1010
1001
1000

0111

31



WA UNIVERSITY of WASHINGTON

Peer Instruction Question

Take the 4-bit number encodingx = 0bl011
+» What’s it mean as an unsigned 4-bit integer?
W

nat about signed?

mooO®mPp
=
=

We’re lost...

CSE351, Winter 2019
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Summary

+ Bit-level operators allow for fine-grained
manipulations of data

= Bitwise AND (&), OR (| ), and NOT (~) different than logical
AND (&&), OR (| |), and NOT (!)

= Especially useful with bit masks

+» Choice of encoding scheme is important

" Tradeoffs based on size requirements and desired
operations

+ Integers represented using unsigned and two’s
complement representations

= Limited by fixed bit width
= We'll examine arithmetic operations next lecture

33



