Data III & Integers I

CSE 351 Winter 2019

hello!

Instructors:

Max Willsey Luis Ceze

Teaching Assistants:

Britt Henderson
Lukas Joswiak
Josie Lee
Wei Lin
Daniel Snitkovsky
Luis Vega
Kory Watson
Ivy Yu

http://xkcd.com/257/

Administrivia

- Lab 0 due tonight, HW 1 on Wednesday
- Lab 1a released
 - Workflow:
 - 1) Edit pointer.c
 - 2) Run the Makefile (make) and check for compiler errors & warnings
 - 3) Run ptest (./ptest) and check for correct behavior
 - 4) Run rule/syntax checker (python dlc.py) and check output = "[]"
 - Due Wed 1/23, will overlap with Lab 1b
 - We grade just your last submission

Lab Reflections

- All subsequent labs (after Lab 0) have a "reflection" portion
 - The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Canvas
 - These will be graded "by hand" (read by TAs)
- Intended to check your understand of what you should have learned from the lab
 - Also great practice for short answer questions on the exams

Memory, Data, and Addressing

- Representing information as bits and bytes
- Organizing and addressing data in memory
- Manipulating data in memory using C
- Strings
- Boolean algebra and bit-level manipulations

Representing strings

- C-style string stored as a sequence of bytes (char*)
 - Elements are one-byte ASCII codes for each character
 - No "String" keyword, unlike Java

32	space	48	0	64	@	80	Р	96	`	112	р
33	!	49	1	65	Α	81	Q	97	a	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	s
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	e	117	u
38	&	54	6	70	F	86	V	102	f	118	v
39	,	55	7	71	G	87	w	103	g	119	w
40	(56	8	72	н	88	Х	104	h	120	х
41)	57	9	73	- 1	89	Υ	105	- 1	121	У
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	К	91	[]	107	k	123	{
44	,	60	<	76	L	92	\	108	1	124	
45	-	61	=	77	М	93]	109	m	125	}
46		62	>	78	N	94	^	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	del

ASCII: American Standard Code for Information Interchange

Null-Terminated Strings

Example: "Life is good" stored as a 13-byte array

- Last character followed by a 0 byte ('\0')(a.k.a. "null terminator")
 - Must take into account when allocating space in memory
 - Note that $'0' \neq ' \setminus 0'$ (i.e. character 0 has non-zero value)
- How do we compute the length of a string?
 - Traverse array until null terminator encountered


```
char s[5] = "foo";
int n = strlen(s);
```


A. Not sure

- * D. 5

Examining Data Representations

- Code to print byte representation of data
 - Any data type can be treated as a byte array by casting it to char*
 - C has unchecked casts !! DANGER !!

```
void show_bytes(char* start, int len) {
  int i;
  for (i = 0; i < len; i++)
     printf("%p\t0x%.2x\n", start+i, *(start+i));
  printf("\n");
}</pre>
```

printf directives:

```
%p Print pointer

\t Tab

%x Print value as hex

\n New line
```

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic (True \rightarrow 1, False \rightarrow 0)

L04: Integers I

- AND: A&B=1 when both A is 1 and B is 1
- OR: $A \mid B=1$ when either A is 1 or B is 1
- XOR: A^B=1 when either A is 1 or B is 1, but not both
- NOT: ~A=1 when A is 0 and vice-versa
- DeMorgan's Law: $(A \mid B) = (A \mid B) = (A \mid B)$

$$\sim (A\&B) = \sim A \mid \sim B$$

A	AND				OR		X	OR		NC	TC
&	0	1	_		0	1	^	0	1	~	
0	0	0		0	0	1	0	0	1	0	1
1	0	1		1	1	1	1	1	0	1	0

General Boolean Algebras

- Operate on bit vectors
 - Operations applied bitwise
 - All of the properties of Boolean algebra apply

Examples of useful operations:

$$x ^x = 0$$

 $x \mid 1 = 1, \quad x \mid 0 = x$

Bit-Level Operations in C

- ❖ & (AND), | (OR), ^ (XOR), ~ (NOT)
 - View arguments as bit vectors, apply operations bitwise
 - Apply to any "integral" data type
 - · long, int, short, char, unsigned
- * Examples with char a, b, c;

Contrast: Logic Operations

- Logical operators in C: & & (AND), | | (OR), ! (NOT)
 - <u>0</u> is False, <u>anything nonzero</u> is True
 - Always return 0 or 1


```
• int x = (42 == 6) \mid \mid boom();
```

• int
$$y = (42 == 6) \&\& boom();$$

- Examples (char data type)
 - -> 0x41 -> 0x00
- 0xCC && 0x33 -> 0x01
- !0x00 -> 0x01
- $-0x00 \mid | 0x33 -> 0x01$
- !!0x41 -> 0x01

Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation

Assembly language:

```
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

OS:

Machine code:

Java vs. C

Computer system:

But before we get to integers....

- Encode a standard deck of playing cards
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?

Two possible representations

low-order 52 bits of 64-bit word

- "One-hot" encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 2) 1 bit per suit (4), 1 bit per number (13); 2 bits set
 - Pair of one-hot encoded values
 - Easier to compare suits and values, but still lots of bits used

13 numbers

4 suits

Two better representations

- 3) Binary encoding of all 52 cards only 6 bits needed
 - $2^6 = 64 \ge 52$

value

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?
- 4) Separate binary encodings of suit (2 bits) and value (4 bits)

Also fits in one byte, and easy to do comparisons

K	Q	J	• • •	3	2	Α
1101	1100	1011	• • •	0011	0010	0001

*)
♦		
\	$\begin{pmatrix} P \\ O \end{pmatrix}$	
^	11	

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

Here we turns all but the bits of interest in v to 0.

```
represents a 5-card hand
 char hand[5];
 char card1, card2;
                          two cards to compare
 card1 = hand[0];
 card2 = hand[1];
 if (isSameSuit(card1,/card2) ) { ... }
#define SUIT MASK
                    0 \times 30
int isSameSuit(char card1, char card2) {
 return (card1 & SUIT MASK) == (card2 & SUIT MASK);
 returns int
             SUIT MASK = 0x30 =
                                         -value
                                   suit
                                                            17
```

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

Here we turns all but the bits of interest in v to 0.

```
#define SUIT MASK
                     0 \times 30
int isSameSuit(char card1, char card2) {
  return (! ((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
  // return (card1 & SUIT MASK) == (card2 & SUIT MASK);
                          SUIT MASK
                              Λ
                                      0
(x^y) equivalent to x==y
```

Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

```
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
   return ((unsigned char)(card1 & VALUE_MASK) (unsigned char)(card2 & VALUE_MASK));
}
```


Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representation
 - Overflow, sign extension
- Shifting and arithmetic operations

Encoding Integers

- The hardware (and C) supports two flavors of integers
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - **Unsigned values:**
 - Signed values:

Example: 8-bit integers (e.g. char)

Unsigned Integers

- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- Add and subtract using the normal "carry" and "borrow" rules, just in binary

Most Significant Bit

- Designate the high-order bit (MSB) as the "sign bit"
 - sign=0: positive numbers; sign=1: negative numbers

Benefits:

- Using MSB as sign bit matches positive numbers with unsigned
- All zeros encoding is still = 0

Examples (8 bits):

- $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
- 0x7F = 011111111₂ is non-negative (+127₁₀)
- $0x85 = 10000101_2$ is negative (-5₁₀)
- $0x80 = 10000000_2$ is negative... zero????

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

CSE351, Winter 2019

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: 4-3 != 4+(-3)

Negatives "increment" in wrong direction!

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works

Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works
 - 2) "Shift" negative numbers to eliminate -0
- MSB still indicates sign!
 - This is why we represent one more negative than positive number (-2^{N-1}) to 2^{N-1}

Two's Complement Negatives

Accomplished with one neat mathematical trick!

- 4-bit Examples:
 - 1010₂ unsigned: $1*2^3+0*2^2+1*2^1+0*2^0=10$
 - 1010₂ two's complement: $-1*2^{3}+0*2^{2}+1*2^{1}+0*2^{0}=-6$
- -1 represented as:

$$1111_2 = -2^3 + (2^3 - 1)$$

 MSB makes it super negative, add up all the other bits to get back up to -1

Why Two's Complement is So Great

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- * Simple arithmetic (x + -y = x y)
- Single zero
- All zeros encoding = 0
- Simple negation procedure:
 - Get negative representation of any integer by taking bitwise complement and then adding one!

$$(\sim x + 1 == -x)$$

Peer Instruction Question

- * Take the 4-bit number encoding x = 0b1011
- What's it mean as an unsigned 4-bit integer?
- What about signed?
 - A. -4
 - B. -5
 - C. 11
 - D. -3
 - E. We're lost...

Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (\sim) different than logical AND (&&), OR (||), and NOT (!)
 - Especially useful with bit masks
- Choice of encoding scheme is important
 - Tradeoffs based on size requirements and desired operations
- Integers represented using unsigned and two's complement representations
 - Limited by fixed bit width
 - We'll examine arithmetic operations next lecture