
CSE351, Winter 2019L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351 Winter 2019

http://xkcd.com/953/

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants:
Britt Henderson
Lukas Joswiak
Josie Lee
Wei Lin
Daniel Snitkovsky
Luis Vega
Kory Watson
Ivy Yu

http://xkcd.com/676/

CSE351, Winter 2019L02: Memory & Data I

Administrivia
v Pre-Course Survey due Friday @ 11:59 pm
v Lab 0 due Monday (1/14)
v Homework 1 due Wednesday (1/16)

v All course materials can be found on the website
schedule

2

CSE351, Winter 2019L02: Memory & Data I

TA Office Hours
v CSE 2nd floor breakout

§ Up the stairs in the
CSE Atrium
(next to the café)

§ At the top of that first
flight, the open area
with the whiteboard
wall is the 2nd floor
breakout!

3

CSE351, Winter 2019L02: Memory & Data I

Roadmap

4

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Winter 2019L02: Memory & Data I

Hardware: Physical View

5

CPU
(empty slot)

USB…

Bus c
onnecti

ons

I/O
controller

Storage connections
Memory

CSE351, Winter 2019L02: Memory & Data I

Hardware: Logical View

6

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Winter 2019L02: Memory & Data I

Hardware: 351 View (version 0)

v The CPU executes instructions
v Memory stores data

v Binary encoding!
§ Instructions are just data

7

Memory

CPU

?

How are data
and instructions

represented?

CSE351, Winter 2019L02: Memory & Data I

Binary Encoding Additional Details
v Because storage is finite in reality, everything is

stored as “fixed” length
§ Data is moved and manipulated in fixed-length chunks
§ Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)
§ Leading zeros now must be included up to “fill out” the fixed

length

v Example: the “eight-bit” representation of the
number 4 is 0b00000100

8

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Winter 2019L02: Memory & Data I

Hardware: 351 View (version 0)

v To execute an instruction, the CPU must:
1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction

3) Perform the specified computation

4) (if applicable) Write the result back to memory
9

Memory

CPU

?
data

instructions

CSE351, Winter 2019L02: Memory & Data I

Hardware: 351 View (version 1)

10

Memory

CPU

take 469

registers

i-cache

data

instructions

v More CPU details:
§ Instructions are held temporarily in the instruction cache
§ Other data are held temporarily in registers

v Instruction fetching is hardware-controlled
v Data movement is programmer-controlled (assembly)

CSE351, Winter 2019L02: Memory & Data I

Hardware: 351 View (version 1)

11

Memory

CPU

take 469

registers

i-cache

data

instructions

v We will start by learning about Memory

How does a
program find its
data in memory?

CSE351, Winter 2019L02: Memory & Data I

Byte-Oriented Memory Organization

v Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
§ Each address is just a number represented in fixed-length binary

v Programs refer to bytes in memory by their addresses
§ Domain of possible addresses = address space
§ We can store addresses as data to “remember” where other data is in

memory

v But not all values fit in a single byte… (e.g. 351)
§ Many operations actually use multi-byte values

12

00•••0

FF•
••F

• • •

CSE351, Winter 2019L02: Memory & Data I

Peer Instruction Question
v If we choose to use 4-bit addresses, how big is our

address space?
§ i.e. How much space can we “refer to” using our addresses?

A. 16 bits
B. 16 bytes
C. 4 bits
D. 4 bytes
E. We’re lost…

13

CSE351, Winter 2019L02: Memory & Data I

Machine “Words”
v Instructions encoded into machine code (0’s and 1’s)

§ Historically (still true in some assembly languages), all
instructions were exactly the size of a word

v We have chosen to tie word size to address size/width
§ word size = address size = register size

§ word size = ! bits → 2! addresses

v Current x86 systems use 64-bit (8-byte) words
§ Potential address space: $%& addresses

264 bytes » 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

§ Actual physical address space: 48 bits
14

CSE351, Winter 2019L02: Memory & Data I

Word-Oriented Memory Organization
v Addresses still specify

locations of bytes in memory
§ Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

§ Address of word 0, 1, … 10?

15

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr.
(hex)

CSE351, Winter 2019L02: Memory & Data I

Word-Oriented Memory Organization
v Addresses still specify

locations of bytes in memory
§ Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

§ Address of word 0, 1, … 10?
v Address of word

= address of first byte in word
§ The address of any chunk of

memory is given by the address
of the first byte

§ Alignment

16

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Winter 2019L02: Memory & Data I

A Picture of Memory (64-bit view)
v A “64-bit (8-byte) word-aligned” view of memory:

§ In this type of picture, each row is composed of 8 bytes

§ Each cell is a byte

§ A 64-bit pointer

will fit on one row

17

0x00
0x
0x
0x
0x
0x
0x
0x
0x
0x

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

one word

Address

CSE351, Winter 2019L02: Memory & Data I

A Picture of Memory (64-bit view)
v A “64-bit (8-byte) word-aligned” view of memory:

§ In this type of picture, each row is composed of 8 bytes

§ Each cell is a byte

§ A 64-bit pointer

will fit on one row

18

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0D 0x0E 0x0F0x0C0x09 0x0A 0x0B0x08

CSE351, Winter 2019L02: Memory & Data I

Addresses and Pointers
v An address is a location in memory

v A pointer is a data object that holds an address

§ Address can point to any data

v Value 504 stored at

address 0x08

§ 50410 = 1F816

= 0x 00 ... 00 01 F8

v Pointer stored at

0x38 points to

address 0x08

19

0x00

0x08

0x10

0x18

0x20

0x28

0x30

0x38

0x40

0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example

(pointers are 64-bits wide)

big-endian

CSE351, Winter 2019L02: Memory & Data I

Addresses and Pointers
v An address is a location in memory
v A pointer is a data object that holds an address

§ Address can point to any data

v Pointer stored at
0x48 points to
address 0x38
§ Pointer to a pointer!

v Is the data stored
at 0x08 a pointer?
§ Could be, depending

on how you use it
20

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Winter 2019L02: Memory & Data I

Data Representations
v Sizes of data types (in bytes)

21To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Winter 2019L02: Memory & Data I

Memory Alignment
v Aligned: Primitive object of ! bytes must have an

address that is a multiple of !
§ More about alignment later in the course

v For good memory system performance, Intel (x86)
recommends data be aligned
§ However the x86-64 hardware will work correctly otherwise

• Design choice: x86-64 instructions are variable bytes long

22

! Type
1 char
2 short
4 int, float
8 long, double, pointers

CSE351, Winter 2019L02: Memory & Data I

Byte Ordering
v How should bytes within a word be ordered in

memory?
§ Example: store the 4-byte (32-bit) int:
0x a1 b2 c3 d4

v By convention, ordering of bytes called endianness
§ The two options are big-endian and little-endian

• In which address does the least significant byte go?
• Based on Gulliver’s Travels: tribes cut eggs on different sides

(big, little)

23

CSE351, Winter 2019L02: Memory & Data I

Byte Ordering
v Big-endian (SPARC, z/Architecture)

§ Least significant byte has highest address

v Little-endian (x86, x86-64)
§ Least significant byte has lowest address

v Bi-endian (ARM, PowerPC)
§ Endianness can be specified as big or little

v Example: 4-byte data 0xa1b2c3d4 at address 0x100

24

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE351, Winter 2019L02: Memory & Data I

Byte Ordering Examples

25

Decimal: 12345
Binary: 0011 0000 0011 1001
Hex: 3 0 3 9

39
30
00
00

IA32, x86-64
(little-endian)

00
00
00
00

39
30
00
00

64-bit
x86-64

39
30
00
00

32-bit
IA32

30
39

00
00

SPARC
(big-endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

int x = 12345;
// or x = 0x3039;

long int y = 12345;
// or y = 0x3039;

(A long int is
the size of a word)

0x00

0x01

0x02

0x03

0x00
0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

CSE351, Winter 2019L02: Memory & Data I

Peer Instruction Question:
v We store the value 0x 01 02 03 04 as a word at

address 0x100 in a big-endian, 64-bit machine

v What is the byte of data stored at address 0x104?

A. 0x04
B. 0x40
C. 0x01
D. 0x10
E. We’re lost…

26

CSE351, Winter 2019L02: Memory & Data I

Endianness
v Endianness only applies to memory storage
v Often programmer can ignore endianness because it

is handled for you
§ Bytes wired into correct place when reading or storing from

memory (hardware)

§ Compiler and assembler generate correct behavior (software)

v Endianness still shows up:
§ Logical issues: accessing different amount of data than how

you stored it (e.g. store int, access byte as a char)

§ Need to know exact values to debug memory errors

§ Manual translation to and from machine code (in 351)

27

CSE351, Winter 2019L02: Memory & Data I

Summary
v Memory is a long, byte-addressed array

§ Word size bounds the size of the address space and memory
§ Different data types use different number of bytes
§ Address of chunk of memory given by address of lowest byte

in chunk
§ Object of ! bytes is aligned if it has an address that is a

multiple of !
v Pointers are data objects that hold addresses
v Endianness determines memory storage order for

multi-byte data

28

