W UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Memory, Data, & Addressing |

CSE 351 Winter 2019

Instructors:
Max Willsey
Luis Ceze

Teaching Assistants:
Britt Henderson
Lukas Joswiak

Josie Lee

Wei Lin

Daniel Snitkovsky
Luis Vega

Kory Watson

lvy Yu

ON A SCALE OF 1Tb 10,
HOW LIKELY IS IT THAT
THIS QUESTON 1S
USING BINARY?

(.u?
WA\T'S AY?)

http://xkcd.com/953/

CSE351, Winter 2019

http://xkcd.com/676/

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON L02: Memory & Datal

Administrivia

+ Pre-Course Survey due Friday @ 11:59 pm

+» Lab 0 due Monday (1/14)
+» Homework 1 due Wednesday (1/16)

« All course materials can be found on the website
schedule

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON L02: Memory & Datal

TA Office Hours

« CSE 2" floor breakout

= Up the stairs in the
CSE Atrium
(next to the café)

= At the top of that first
flight, the open area
with the whiteboard
wall is the 2" floor
breakout!

W UNIVERSITY of WASHINGTON

Roadmap

LO2: Memory & Data |

CSE351, Winter 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG() ; Arrays & structs
~ & Memory & caches
Assembly get_mpg: Processes
. pushqg srbp .

language: movq srsp, Srbp Virtual memory

. Memory allocation

Popq srbp Javavs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A \
COQe. 1000100111000010 A
110000011111101000011111 Windows 10 05 X Yosermite 0
| |
v v

Computer
system:

CSE351, Winter 2019

YA UNIVERSITY of WASHINGTON L02: Memory & Datal

Hardware: Physical View

N USB...

\
(}' PCl-Express Slots
< 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

/O Intel ICH10 |

Chipset

controller

Serial ATA
Headers R

Storage connections

DDR2
1066+MHz
Dual Channel
Memory Slots

Memory

W UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: Logical View

CPU

Bus

USB

Etc.

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: 351 View (version 0)

4 R

\LPU Y,

«+ The CPU executes instructions

+ Memory stores data A

How are data
and instructions

+ Binary encoding! represented?

%
" |nstructions are just data

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

Binary Encoding Additional Details

+» Because storage is finite in reality, everything is
stored as “fixed” length
= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

= Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the
number 4 is 0b00000100

Least Significant Bit (LSB)
Most Significant Bit (MSB)

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Hardware: 351 View (version 0)

a instructions

data

\LPU Y,

+ To execute an instruction, the CPU must:
1) Fetch the instruction
2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation
4) (if applicable) Write the result back to memory

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Hardware: 351 View (version 1)

(i-cache

take 469

instructions

\C P U registersj

« More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers

+ Instruction fetching is hardware-controlled
+ Data movement is programmer-controlled (assembly)

10

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Hardware: 351 View (version 1)

(i-cache

take 469

« We will start by learning about Memory

instructions

/
How does a

program find its
data in memory?/

o

11

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Byte-Oriented Memory Organization

)
0’0

)
0’0

)
0’0

Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
= Each address is just a number represented in fixed-length binary

Programs refer to bytes in memory by their addresses

= Domain of possible addresses = address space

= \We can store addresses as data to “remember” where other data is in
memory

But not all values fit in a single byte... (e.g. 351)

= Many operations actually use multi-byte values
12

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

Peer Instruction Question

+ If we choose to use 4-bit addresses, how big is our
address space?

= j.e. How much space can we “refer to” using our addresses?

16 bytes

4 bits

. 4 bytes
We're lost...

m o O W >

13

CSE351, Winter 2019

W UNIVERSITY of WASHINGTON L02: Memory & Datal

Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Historically (still true in some assembly languages), all
instructions were exactly the size of a word

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits = 2¥ addresses

+ Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
2%4 bytes ~ 1.8 x 10%° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

14

W UNIVERSITY of WASHINGTON

Word-Oriented Memory Organization

» Addresses still specify
locations of bytes in memory

= Addresses of successive words
differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

= Address of wordO, 1, ... 10?

LO2: Memory & Data |

64-bit
Words

“Addr

?7?

—_— — —

_— — —

32-bit
Words

Addr

??

Addr

?7?

Addr

??

Addr

??

Addr

??

CSE351, Winter 2019

Addr.
(hex)

Ox00
0Ox01
0x02
Ox03
0x04
0x05
Ox06
0Ox07
Ox08
0x09
Ox0A
0Ox0B
Ox0C
Ox0D
OxOE
OxOF

15

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Word-Oriented Memory Organization

. . 64-bit 32-bit Butes fddr.
» Addresses still specify Words Words YIS (hex)
locations of bytes in memory 0x00
= Addresses of successive words Aidr 0x01
differ by word size (in bytes): s 0000 0x02
e.g. 4 (32-bit) or 8 (64-bit) . 0x03
= Address of word 0, 1, ... 10? 0000 Addr 8?8‘5l
» Address of word 0004 0x06
= address of first byte in word 0x07
* The address of any chunk of 0x08
)) Addr OX09
memory is given by the address -
of the first byte Addr 0008 Ox0A
. Al - Ox0B
Alignment e 0XOC
Addr 0x0D
0012 OxOE
OxOF .

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

= A 64-bit pointer I : \

WI” fl t on one row 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07
v T ¥ T ¢T VT ¢ T ¥ T ¢ 1 ¥

Address
¥ | 0x00
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox

17

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes
= Each cell is a byte

one \l/vord
= A 64-bit pointer I \
. . 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07 Add
will fit on one row . . A , , . ress
¥ 1 ¢ ¥1 ¥ ¥ 1 ¥ 1 %1% |0x00

7 _: o A A 0Ox08
/'_'L _'L/% 1 0x10
' ! 0x18

| L 0x20

| S 0x28

0X08 0x09 OXOA O0xOB 0XOC OXOD OXOE OXxOF | | ! ! 0x30
IR 0x38
1 oo

R I O I O A %2

18

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

[64-bit example]
()

Addresses and Pointers

pointers are 64-bits wide

big-endian

+» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+» Value 504 stored at I R A 0x00
address 0x08 ~»00:00:00;00;00;00;01;F8]| 0x08
R 0x10

" 504, =1F84; R Ox18
=0x 00 ... 00 01 F8 I O O A 0w

. L1 4 r bbb 10x28

+ Pointer stored at 1 1 1 1 1 0§30
0x38 points to 000000, 00,00:00:0008] 0x38
R 0x40

address 0x08] Ox48

19

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

[64-bit example]
()

Addresses and Pointers

pointers are 64-bits wide

big-endian

+» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+ Pointer stored at L r v b loxoo
0x48 points to ~»00:00:00:00:00:00:01:F8]| 0x08
I T O O O I e X

address 0x38 T loxs

= Pointer to a pointer! I R S N R SN 0x20

I I I I I I I Ox28

« |s the data stored | 0x30

at 0x08 a pointer? {00 0000000000 00]08] 0x38

, IR 0x40

" Could be, depending “00700:00:00: 00 00 00 38| 0x48
on how you use it

20

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Data Representations

+ Sizes of data types (in bytes)

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long 8 8
long double 8 16
(reference) pointer * 4 8

[address size = word size]
To use “bool” in C, you must #include <stdbool.h>

21

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Memory Alignment

+ Aligned: Primitive object of K bytes must have an
address that is a multiple of K

®= More about alignment later in the course

1 char

2 short

4 int, float

8 long, double, pointers

+ For good memory system performance, Intel (x86)
recommends data be aligned

= However the x86-64 hardware will work correctly otherwise
- Design choice: x86-64 instructions are variable bytes long

22

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

Byte Ordering

+» How should bytes within a word be ordered in
memory?

= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4

L)

L)

+ By convention, ordering of bytes called endianness

" The two options are big-endian and little-endian
- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

23

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Byte Ordering

+» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address
s+ Little-endian (x86, x86-64)

= Least significant byte has lowest address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+~ Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 O0x101 0x102 0Ox103
Big-Endian al | b2 | c3 | d4

0x100 Ox101 0x102 0x103
Little-Endian d4 | c3 b2 | al

24

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

Decimal: 12345
Binary: 0011 0000 0011 1001

Byte Ordering Examples | S o 3 s

IA32, x86-64 SPARC
(little-endian) (big-endian)
int x = 12345; 0x00 0x00
// or x = 0x3039; 0x01 0x01
0x02 0x02
0x03 0x03
32-bit 64-bit 32-bit 64-bit
long int y = 12345; IA32 X86-64 SPARC SPARC
// or v = 0x3039; O0x00] 39 = 39 | 0x00 oxo0| 00 00 |0x00
0x01] 30 | 30 | O0x01 oxo1| 00 00 |Ox01
0x02| 00 [~—| 00 | Ox02 ox02| 30 00 |[Ox02
0x031 00 [00 | 0x03 ox03| 39 00 |0x03
(A long int is 00 [0x04 00 [0x04
: 00 [ox05 00 |0x05
the size of a word) 50 oot 20 | ox0s
00 | ox07 39 |o0x07

25

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2019

Peer Instruction Question:

» We store the value O0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

« What is the byte of data stored at address 0x1047?

m o O W >

0x40
0x01

. Ox10

We’re lost...

26

W UNIVERSITY of WASHINGTON L02: Memory & Data CSE351, Winter 2019

Endianness

% Endianness only applies to memory storage

+» Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

= Compiler and assembler generate correct behavior (software)
+» Endianness still shows up:

" |ogical issues: accessing different amount of data than how
you stored it (e.g. store 1nt, access byte as a char)

= Need to know exact values to debug memory errors

= Manual translation to and from machine code (in 351)

27

W UNIVERSITY of WASHINGTON L02: Memory & Datal

Summary

+» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

= Object of K bytes is aligned if it has an address that is a
multiple of K

+ Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

CSE351, Winter 2019

28

