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Administrivia

+ Pre-Course Survey due Friday @ 11:59 pm

+» Lab 0 due Monday (1/14)
+» Homework 1 due Wednesday (1/16)

« All course materials can be found on the website
schedule
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TA Office Hours

« CSE 2" floor breakout

= Up the stairs in the
CSE Atrium
(next to the café)

= At the top of that first
flight, the open area
with the whiteboard
wall is the 2" floor
breakout!
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C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG() ; Arrays & structs
~ & Memory & caches
Assembly get_mpg: Processes
. pushqg srbp .

language: movq srsp, Srbp Virtual memory

. Memory allocation

Popq srbp Javavs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A \
COQe. 1000100111000010 A
110000011111101000011111 Windows 10 05 X Yosermite 0
| |
v v

Computer
system:
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Hardware: Physical View

N USB...

\
(}' PCl-Express Slots
< 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

/O Intel ICH10 |

Chipset

controller

Serial ATA
Headers R

Storage connections

DDR2
1066+MHz
Dual Channel
Memory Slots

Memory
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Hardware: Logical View

CPU

Bus

USB

Etc.
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Hardware: 351 View (version 0)

4 R

\LPU Y,

«+ The CPU executes instructions

+ Memory stores data A

How are data
and instructions

+ Binary encoding! represented?

%
" |nstructions are just data

CSE351, Winter 2019
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Binary Encoding Additional Details

+» Because storage is finite in reality, everything is
stored as “fixed” length
= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

= Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the
number 4 is 0b00000100

Least Significant Bit (LSB)
Most Significant Bit (MSB)
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Hardware: 351 View (version 0)

a instructions

data

\LPU Y,

+ To execute an instruction, the CPU must:
1) Fetch the instruction
2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation
4) (if applicable) Write the result back to memory
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Hardware: 351 View (version 1)

( i-cache

take 469

instructions

\C P U registersj

« More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers

+ Instruction fetching is hardware-controlled
+ Data movement is programmer-controlled (assembly)

10
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Hardware: 351 View (version 1)

( i-cache

take 469

« We will start by learning about Memory

instructions

/
How does a

program find its
data in memory?/

o

11
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Byte-Oriented Memory Organization

)
0’0

)
0’0

)
0’0

Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
= Each address is just a number represented in fixed-length binary

Programs refer to bytes in memory by their addresses

= Domain of possible addresses = address space

= \We can store addresses as data to “remember” where other data is in
memory

But not all values fit in a single byte... (e.g. 351)

= Many operations actually use multi-byte values
12
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Peer Instruction Question

+ If we choose to use 4-bit addresses, how big is our
address space?

= j.e. How much space can we “refer to” using our addresses?

16 bytes

4 bits

. 4 bytes
We're lost...

m o O W >

13
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Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Historically (still true in some assembly languages), all
instructions were exactly the size of a word

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits = 2¥ addresses

+ Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
2%4 bytes ~ 1.8 x 10%° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

14
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Word-Oriented Memory Organization

» Addresses still specify
locations of bytes in memory

=  Addresses of successive words
differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

= Address of wordO, 1, ... 10?

LO2: Memory & Data |

64-bit
Words

“Addr

?7?

—_— — —

_— — —

32-bit
Words

Addr

??

Addr

?7?

Addr

??

Addr

??

Addr

??
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Addr.
(hex)

Ox00
0Ox01
0x02
Ox03
0x04
0x05
Ox06
0Ox07
Ox08
0x09
Ox0A
0Ox0B
Ox0C
Ox0D
OxOE
OxOF

15
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Word-Oriented Memory Organization

. . 64-bit  32-bit Butes  fddr.
» Addresses still specify Words  Words YIS (hex)
locations of bytes in memory 0x00
= Addresses of successive words Aidr 0x01
differ by word size (in bytes): s 0000 0x02
e.g. 4 (32-bit) or 8 (64-bit) . 0x03
= Address of word 0, 1, ... 10? 0000 Addr 8?8‘5l
» Address of word 0004 0x06
= address of first byte in word 0x07
* The address of any chunk of 0x08
) ) Addr OX09
memory is given by the address -
of the first byte Addr 0008 Ox0A
. Al - Ox0B
Alignment e 0XOC
Addr 0x0D
0012 OxOE
OxOF .
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A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

= A 64-bit pointer I : \

WI” fl t on one row 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07
v T ¥ T ¢T VT ¢ T ¥ T ¢ 1 ¥

Address
¥ | 0x00
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox

17
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A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes
= Each cell is a byte

one \l/vord
= A 64-bit pointer I \
. . 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07 Add
will fit on one row . . A , , . ress
¥ 1 ¢ ¥1 ¥ ¥ 1 ¥ 1 %1% |0x00

7 _: o A A 0Ox08
/'_'L _'L/% 1 0x10
' ! 0x18

| L 0x20

| S 0x28

0X08 0x09 OXOA O0xOB 0XOC OXOD OXOE OXxOF | | ! ! 0x30
IR 0x38
1 oo

R I O I O A %2

18
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[ 64-bit example ]
( )

Addresses and Pointers

pointers are 64-bits wide

big-endian

+» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+» Value 504 stored at I R A 0x00
address 0x08 ~»00:00:00;00;00;00;01;F8]| 0x08
R 0x10

" 504, =1F84; R Ox18
=0x 00 ... 00 01 F8 I O O A 0w

. L1 4 r bbb 10x28

+ Pointer stored at 1 1 1 1 1 0§30
0x38 points to 000000, 00,00:00:0008] 0x38
R 0x40

address 0x08 ] Ox48

19
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[ 64-bit example ]
( )

Addresses and Pointers

pointers are 64-bits wide

big-endian

+» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+ Pointer stored at L r v b loxoo
0x48 points to ~»00:00:00:00:00:00:01:F8]| 0x08
I T O O O I e X

address 0x38 T loxs

= Pointer to a pointer! I R S N R SN 0x20

I I I I I I I Ox28

« |s the data stored | 0x30

at 0x08 a pointer? {00 0000000000 00]08] 0x38

, IR 0x40

" Could be, depending “00700:00:00: 00 00 00 38| 0x48
on how you use it

20
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Data Representations

+ Sizes of data types (in bytes)

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long 8 8
long double 8 16
(reference) pointer * 4 8

[ address size = word size ]
To use “bool” in C, you must #include <stdbool.h>

21
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Memory Alignment

+ Aligned: Primitive object of K bytes must have an
address that is a multiple of K

®= More about alignment later in the course

1 char

2 short

4 int, float

8 long, double, pointers

+ For good memory system performance, Intel (x86)
recommends data be aligned

= However the x86-64 hardware will work correctly otherwise
- Design choice: x86-64 instructions are variable bytes long

22
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Byte Ordering

+» How should bytes within a word be ordered in
memory?

= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4

L)

L)

+ By convention, ordering of bytes called endianness

" The two options are big-endian and little-endian
- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

23
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Byte Ordering

+» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address
s+ Little-endian (x86, x86-64)

= Least significant byte has lowest address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+~ Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 O0x101 0x102 0Ox103
Big-Endian al | b2 | c3 | d4

0x100 Ox101 0x102 0x103
Little-Endian d4 | c3 b2 | al

24
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Decimal: 12345
Binary: 0011 0000 0011 1001

Byte Ordering Examples | S o 3 s

IA32, x86-64 SPARC
(little-endian) (big-endian)
int x = 12345; 0x00 0x00
// or x = 0x3039; 0x01 0x01
0x02 0x02
0x03 0x03
32-bit  64-bit 32-bit 64-bit
long int y = 12345; IA32 X86-64 SPARC SPARC
// or v = 0x3039; O0x00] 39 = 39 | 0x00 oxo0| 00 00 |0x00
0x01] 30 | 30 | O0x01 oxo1| 00 00 |Ox01
0x02| 00 [~—| 00 | Ox02 ox02| 30 00 |[Ox02
0x031 00 [ 00 | 0x03 ox03| 39 00 |0x03
(A long int is 00 [ 0x04 00 [0x04
: 00 [ ox05 00 |0x05
the size of a word) 50 oot 20 | ox0s
00 | ox07 39 |o0x07

25
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Peer Instruction Question:

» We store the value O0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

« What is the byte of data stored at address 0x1047?

m o O W >

0x40
0x01

. Ox10

We’re lost...

26
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Endianness

% Endianness only applies to memory storage

+» Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

= Compiler and assembler generate correct behavior (software)
+» Endianness still shows up:

" |ogical issues: accessing different amount of data than how
you stored it (e.g. store 1nt, access byte as a char)

= Need to know exact values to debug memory errors

= Manual translation to and from machine code (in 351)

27
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Summary

+» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

= Object of K bytes is aligned if it has an address that is a
multiple of K

+ Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

CSE351, Winter 2019
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