Virtual Memory II

CSE 351 Summer 2019

Instructor:

Sam Wolfson

Teaching Assistants:

Rehaan Bhimani Daniel Hsu **Corbin Modica**

FIGURING OUT WHY MY HOME SERVER KEEPS RUNNING OUT OF SWAP SPACE AND CRASHING:

1-10 HOURS

PLUGGING IT INTO A LIGHT TIMER SO IT REBOOTS EVERY 24 HOURS:

5 MINUTES

WHY EVERYTHING I HAVE IS BROKEN

https://xkcd.com/1495/

Administrivia

- Lab 4, due Monday (8/12)
 - Do the Canvas quiz before starting on Part III(blocking)
- HW5 released
- Grades for lab 3 released

Page Hit

Page hit: VM reference is in physical memory

Page Fault

Page fault: VM reference is NOT in physical memory

Page Fault Exception

- User writes to memory location
- That portion (page) of user's memory is currently on disk

```
int a[1000];
int main ()
{
    a[500] = 13;
}
```


- Page fault handler must load page into physical memory
- Returns to faulting instruction: mov is executed again!
 - Successful on second try

Handling a Page Fault

Page miss causes page fault (an exception)

Handling a Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

W UNIVERSITY of WASHINGTON

Handling a Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)

Handling a Page Fault

- Page miss causes page fault (an exception)
- Page fault handler selects a victim to be evicted (here VP 4)
- Offending instruction is restarted: page hit!

Peer Instruction Question

- How many bits wide are the following fields?
 - 16 KiB pages = 2¹⁰ · 2⁴ = 2¹⁴ ⇒ offset = 14 bits
 - 48-bit virtual addresses
 - 16 GiB physical memory = $2^{32} \cdot 2^2 = 2^{34} \Rightarrow PA$ with = 34 bits
 - Vote at: <u>http://pollev.com/wolfson</u>

Virtual Memory (VM)

- Overview and motivation
- VM as a tool for caching
- Address translation
- ***** VM as a tool for memory management
- ***** VM as a tool for memory protection

VM for Managing Multiple Processes

- Key abstraction: each process has its own virtual address space
 - It can view memory as a simple linear array
- With virtual memory, this simple linear virtual address space need not be contiguous in physical memory
 - Process needs to store data in another VP? Just map it to any PP!

Simplifying Linking and Loading

Linking *

- Each program has similar virtual address space
- Code, Data, and Heap always start at the same addresses

Loading *

- execve allocates virtual pages for .text and .data sections & creates PTEs marked as invalid
- The .text and .data sections are copied, page by page, on demand by the virtual memory system

VM for Protection and Sharing

- The mapping of VPs to PPs provides a simple mechanism to protect memory and to share memory between processes
 - Sharing: map virtual pages in separate address spaces to the same physical page (here: PP 6)
 - Protection: process can't access physical pages to which none of its virtual pages are mapped (here: Process 2 can't access PP 2)

Memory Protection Within Process

- VM implements read/write/execute permissions
 - Extend page table entries with permission bits
 - MMU checks these permission bits on every memory access
 - If violated, raises exception and OS sends SIGSEGV signal to process (segmentation fault)

- 1) Processor sends virtual address to MMU (memory management unit)
- 2-3) MMU fetches PTE from page table in cache/memory (Uses PTBR to find beginning of page table for current process)
- 4) MMU sends *physical* address to cache/memory requesting data
- 5) Cache/memory sends data to processor

VA = Virtual AddressPTEA = Page Table Entry AddressPTE= Page Table EntryPA = Physical AddressData = Contents of memory stored at VA originally requested by CPU

Address Translation: Page Fault

- 1) Processor sends virtual address to MMU
- **2-3)** MMU fetches PTE from page table in cache/memory
- 4) Valid bit is zero, so MMU triggers page fault exception
- 5) Handler identifies victim (and, if dirty, pages it out to disk)
- 6) Handler pages in new page and updates PTE in memory
- 7) Handler returns to original process, restarting faulting instruction

Hmm... Translation Sounds Slow

- The MMU accesses memory *twice*: once to get the PTE for translation, and then again for the actual memory request
 - The PTEs may be cached in L1 like any other memory word
 - But they may be evicted by other data references
 - And a hit in the L1 cache still requires 1-3 cycles
- What can we do to make this faster?
 - "Any problem in computer science can be solved by adding another level of indirection." – David Wheeler, inventor of the subroutine
 - "And all of the new problems that creates can be solved by adding another cache." - Sam Wolfson, inventor of this quote

Speeding up Translation with a TLB

- Translation Lookaside Buffer (TLB):
 - Small hardware cache in MMU
 - Maps virtual page numbers to physical page numbers
 - Contains complete page table entries for small number of pages
 - Modern Intel processors have 128 or 256 entries in TLB
 - Much faster than a page table lookup in cache/memory

- ✤ A TLB miss incurs an additional memory access (the PTE)
 - Fortunately, TLB misses are rare

Fetching Data on a Memory Read Move ('.rsi), /.(ax

1) Check TLB

- Input: VPN, Output: PPN
- TLB Hit: Fetch translation, return PPN
- TLB Miss: Check page table (in memory)
 - *Page Table Hit:* Load page table entry into TLB
 - *Page Fault:* Fetch page from disk to memory, update corresponding page table entry, then load entry into TLB

2) Check cache

- Input: physical address, <u>Output</u>: data
- Cache Hit: Return data value to processor
- Cache Miss: Fetch data value from memory, store it in cache, return it to processor

irfual address V Physical address

Address Translation

- VM is complicated, but also elegant and effective
 - Level of indirection to provide isolated memory & caching
 - TLB as a cache of page tables avoids two trips to memory for every memory access
 <u>TLB Miss</u>
 <u>TLB Hit</u>

Simple Memory System Example (small)

- Addressing
 - 14-bit virtual addresses n = 19
 - 12-bit physical address m = 12
 - Page size = 64 bytes $\log_2 64 = 6 \Rightarrow 6$ offset b:ts

Simple Memory System: Page Table

- * Only showing first 16 entries (out of $2^{n-p} \neq 2^{n-c}$
 - **Note:** showing 2 hex digits for PPN even though only 6 bits
 - Note: other management bits not shown, but part of PTE

VPN	PPN	Valid
0	28	1
1	—	0
2	33	1
3	02	1
4	_	0
5	16	1
6	_	0
7	_	0

VPN	PPN	Valid
8	13	1
9	17	1
Α	09	1
В	_	0
С	-	0
D	2D	1
Ε	_	0
F	0D	1

Simple Memory System: TLB

Set	Тад	PPN	Valid	Tag	PPN	Valid	Tag	PPN	Valid	Tag	PPN	Valid
0	03	_	0	09	0D	1	00	_	0	07	02	1
1	03	2D	1	02	_	0	04	_	0	0A	_	0
2	02	—	0	08	—	0	06	—	0	03	—	0
3	07	—	0	03	0D	1	0A	34	1	02	_	0

Simple Memory System: Cache

Note: It is just coincidence that the PPN is the same width as the cache Tag

- ✤ Direct-mapped with K = 4 B, C/K = 16
- Addressed using *physical addresses*

Index	Tag	Valid	B0	B1	B2	B3	Index	Tag	Valid	B0	B1	B2	B3
0	19	1	99	11	23	11	8	24	1	3A	00	51	89
1	15	0	-	_	_	-	9	2D	0	—	_	_	-
2	1B	1	00	02	04	08	Α	2D	1	93	15	DA	3B
3	36	0	-	_	_	-	В	OB	0	—	_	_	-
4	32	1	43	6D	8F	09	С	12	0	—	_	_	—
5	0D	1	36	72	FO	1D	D	16	1	04	96	34	15
6	31	0	_	_	_	_	Е	13	1	83	77	1B	D3
7	16	1	11	C2	DF	03	F	14	0	_	_	_	_

Current State of Memory System

TLB:

Set	Tag	PPN	V									
0	03	—	0	09	0D	1	00	—	0	07	02	1
1	03	2D	1	02	—	0	04	-	0	0A	-	0
2	02	—	0	08	—	0	06	—	0	03	—	0
3	07	—	0	03	0D	1	0A	34	1	02	—	0

Page table (partial):

VPN	PPN	V	VPN	PPN	V
0	28	1	8	13	1
1	_	0	9	17	1
2	33	1	Α	09	1
3	02	1	В	-	0
4	-	0	С	-	0
5	16	1	D	2D	1
6	_	0	E	-	0
7	_	0	F	0D	1

Cache:

Index	Tag	V	BO	B1	B2	B3	Index	Tag	V	BO	B1	B2	B3
0	19	1	99	11	23	11	8	24	1	3A	00	51	89
1	15	0	-	_	_	_	9	2D	0	_	_	_	_
2	1B	1	00	02	04	08	Α	2D	1	93	15	DA	3B
3	36	0	-	_	—	—	В	OB	0	-	—	_	_
4	32	1	43	6D	8F	09	С	12	0	-	_	-	_
5	0D	1	36	72	FO	1D	D	16	1	04	96	34	15
6	31	0	_	_	_	_	E	13	1	83	77	1B	D3
7	16	1	11	C2	DF	03	F	14	0	_	_	_	_

Note: It is just coincidence that the PPN is the same width as the cache Tag

Note: It is just coincidence that the PPN is the same width as the cache Tag

Note: It is just coincidence that the PPN is the same width as the cache Tag

Physical Address:

Note: It is just coincidence that the PPN is the same width as the cache Tag

Memory Overview

Page Table Reality

- Sust one issue... the numbers don't work out for the story so far!
- 2¹ B
 The problem is the page table for each process:
 - Suppose 64-bit VAs, 8 KiB pages, 8 Gig physical memory
 - How many page table entries is that? 2^{33} R $2^{64}/2^{13} = 2^{51}$
 - About how long is each PTE? $2^{33}/2^{13} = 2^{20} \Rightarrow 20 \text{ br} PPN + 3 \text{ mgnt. bits} \approx 38$
 - Moral: Cannot use this naïve implementation of the virtual → physical page mapping it's way too big

Multi-level Page Tables

- A tree of depth k where each node at depth i has up to 2^j children if part i of the VPN has j bits
- Hardware for multi-level page tables inherently more complicated
 - But it's a necessary complexity 1-level does not fit
- Why it works: Most subtrees are not used at all, so they are never created and definitely aren't in physical memory
 - Parts created can be evicted from cache/memory when not being used
 - Each node can have a size of ~1-100KB
- But now for a k-level page table, a TLB miss requires k + 1 cache/memory accesses
 - Fine so long as TLB misses are rare motivates larger TLBs

BONUS SLIDES

For Fun: DRAMMER Security Attack

- Why are we talking about this?
 - Recent(ish): Announced in October 2016; Google released Android patch on November 8, 2016
 - Relevant: Uses your system's memory setup to gain elevated privileges
 - Ties together some of what we've learned about virtual memory and processes
 - Interesting: It's a software attack that uses only hardware vulnerabilities and requires no user permissions

Underlying Vulnerability: Row Hammer

- Dynamic RAM (DRAM) has gotten denser over time
 - DRAM cells physically closer and use smaller charges
 - More susceptible to "disturbance errors" (interference)
- DRAM capacitors need to be "refreshed" periodically (~64 ms)
 - Lose data when loss of power
 - Capacitors accessed in rows
- Rapid accesses to one row can flip bits in an adjacent row!
 - ~ 100K to 1M times

By Dsimic (modified), CC BY-SA 4.0, https://commons.wikimedia.org/w /index.php?curid=38868341

Victim row

Row Hammer Exploit

- Force constant memory access
 - Read then flush the cache
 - clflush flush cache line
 - Invalidates cache line containing the specified address
 - Not available in all machines or environments

```
hammertime:
mov (X), %eax
mov (Y), %ebx
clflush (X)
clflush (Y)
jmp hammertime
```

- Want addresses X and Y to fall in activation target row(s)
 - Good to understand how *banks* of DRAM cells are laid out
- The row hammer effect was discovered in 2014
 - Only works on certain types of DRAM (2010 onwards)
 - These techniques target x86 machines

Consequences of Row Hammer

- Row hammering process can affect another process via memory
 - Circumvents virtual memory protection scheme
 - Memory needs to be in an adjacent row of DRAM
- Worse: privilege escalation
 - Page tables live in memory!
 - Hope to change PPN to access other parts of memory, or change permission bits
 - Goal: gain read/write access to a page containing a page table, hence granting process read/write access to all of physical memory

Effectiveness?

- Doesn't seem so bad random bit flip in a row of physical memory
 - Vulnerability affected by system setup and physical condition of memory cells

Improvements:

- Double-sided row hammering increases speed & chance
- Do system identification first (e.g. Lab 4)
 - Use timing to infer memory row layout & find "bad" rows
 - Allocate a huge chunk of memory and try many addresses, looking for a reliable/repeatable bit flip
- Fill up memory with page tables first
 - fork extra processes; hope to elevate privileges in any page table

What's DRAMMER?

- No one previously made a huge fuss
 - Prevention: error-correcting codes, target row refresh, higher DRAM refresh rates
 - Often relied on special memory management features
 - Often crashed system instead of gaining control
- Research group found a *deterministic* way to induce row hammer exploit in a non-x86 system (ARM)
 - Relies on predictable reuse patterns of standard physical memory allocators
 - Universiteit Amsterdam, Graz University of Technology, and University of California, Santa Barbara

DRAMMER Demo Video

- It's a shell, so not that sexy-looking, but still interesting
 - Apologies that the text is so small on the video

nine . Pares	and hits Among it's a second sec
	Travy Said york which you'r renn pron
AND STREET, SHOWING THE	9 1991; Nove Table and Table Jack Jack Jack Jack Jack Jack Jack Jack
Google instance &	20 Juni - Nan read and Juni - Sana Juni -
12.26 M	3. Morth. Name right main and rights (2008) 2008 (2008) Control and
12.30	Const. War (and wind the const co
Sector -	n norm. The and any first rand predictor provided (1991) and the first rand predictory privately restrict provided privately (1991) (1992) An high random privately rest and the state of any and any state and any state and any state and any state (1992) An high random privately (1991) (1992) (1992)
	2 Mark - Mark - Spark
	Trans and and part from another provided " Carding de Nomed is walking stransformed and strand, and walking a being data at the second at the
	A press. New regist and finds income remed and and the second sec
	EASA, Total and Total Intelling principle provides: here the principle principle in the principle of the bit we principle of the total and the principle of
alde Dies Rettan Patter	2019 2011 State Series for The Character and a Series Anna California and a series control control control 2019 2010 Anna California (2019) 2010 2010 2010 2019 2010 2010 2010 2010 2010 2010 2010
	202013 de Deuxid e veltatione, strend verde de stretaut antennos destructues en et un en
🕫 📞 🎟 🎯 🔯	Table West and watch and a set
	 Marka Lucié André privat deuxe send tener de la construcción de la construcc

How did we get here?

- Computing industry demands more and faster storage with lower power consumption
- Ability of user to circumvent the caching system
 - clflush is an unprivileged instruction in x86
 - Other commands exist that skip the cache
- Availability of virtual to physical address mapping
 - Example: /proc/self/pagemap on Linux (not human-readable)
- Google patch for Android (Nov. 8, 2016)
 - Patched the ION memory allocator

More reading for those interested

- DRAMMER paper: <u>https://vvdveen.com/publications/drammer.pdf</u>
- Google Project Zero: <u>https://googleprojectzero.blogspot.com/2015/03/exp</u> <u>loiting-dram-rowhammer-bug-to-gain.html</u>
- First row hammer paper: <u>https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf</u>
- Wikipedia:

https://en.wikipedia.org/wiki/Row_hammer