YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

System Control Flow & Processes
CSE 351 Summer 2019

Instructor:
Sam Wolfson

*runhing®
*calculating™
*thinking™
Teaching Assistants:
Daniel Hsu
Rehaan Bhimani

Corbin Modica

PRETENDS TO BE DRAWING | PTBD.JWELS.BERLIN

YW UNIVERSITY of WASHINGTON CSE 351, Summer 2019

Administrivia

+ Homework 4, due Wed 8/7 (Structs, Caches)
+ Lab 4, due Monday (8/12)

YA UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly get_mpg h) Processes
. pushqg srbp .
language: movq srsp, $rbp Virtual memory
... Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
Code. 1000100111000010
110000011111101000011111

v

Computer
system:

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Leading Up to Processes

+» System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Control Flow

4

+ So far: we’ve seen how the flow of control changes
as a single program executes

Reality: multiple programs running concurrently

" How does control flow across the many components of the
system?

" |n particular: More programs running than CPUs

Exceptional control flow is basic mechanism used for:
® Transferring control between processes and OS
= Handling I/O and virtual memory within the OS

" Implementing multi-process apps like shells and web servers
" Implementing concurrency

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Control Flow

+ Processors do only one thing:

" From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

= This sequence is the CPU’s control flow (or flow of control)

Physical control flow

<startup>

instr,

instr,
time instr,

instr,,
<shutdown>

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Altering the Control Flow

+~ Up to now, two ways to change control flow:
= Jumps (conditional and unconditional)
= Call and return
= Both react to changes in program state

+ Processor also needs to react to changes in system state
= Unix/Linux user hits “Ctrl-C” at the keyboard
= User clicks on a different application’s window on the screen
= Data arrives from a disk or a network adapter
" |nstruction divides by zero
= System timer expires

+ Can jumps and procedure calls achieve this?

"= No —the system needs mechanisms for “exceptional” control flow!

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

This is extra

Java Digression (non-testable)

material

+ Java has exceptions, but they’'re something different

= e.g., NullPointerException, OhHeckSomethingHappenedException, ...
" throw statements

" try/catch statements (“throw to youngest matching catch on the call-
stack, or exit-with-stack-trace if none”)

+ Java exceptions are for reacting to (unexpected) program state
= Can be implemented with stack operations and conditional jumps
= A mechanism for “many call-stack returns at once”

= Requires additions to the calling convention, but we already have the
CPU features we need

+» System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for divide-by-
zero) and implemented very differently

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Exceptional Control Flow

+ Exists at all levels of a computer system

+» Low level mechanisms

= Exceptions

« Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

Implemented using a combination of hardware and OS software

+ Higher level mechanisms

= Process context switch

- Implemented by OS software and hardware timer
= Signals

- Implemented by OS software

- We won’t cover these — see CSE451 and CSE/EE474

YW UNIVERSITY of WASHINGTON L18: Processes

CSE 351, Summer 2019

Exceptions

% An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e. change in processor state)
= Kernel is the memory-resident part of the OS

= Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code OS Kernel Code

event —— current_instr v exception

>
next_instr exception processing by
exception handler, then:
e return to current instr,

* return to next_instr, OR
e abort

« How does the system know where to jump to in the OS?

10

L18: Processes

CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON

Exception Table

+» A jump table for exceptions (also called Interrupt Vector Table)

= Each type of event has a unique

exception number k

= k =index into exception table

(a.k.a interrupt vector)

= Handler k is called each time

exception k occurs

Exception

Table

code for
exception handler 0

= O

code for
exception handler 1

v _~
o

o

code for
exception handler 2

n-1

bl

|

Exception
numbers

code for
exception handler n-1

11

YW UNIVERSITY of WASHINGTON

L18: Processes

Exception Table (Excerpt)

Exception Number
0

13

14

18

32-255

Description

Divide error

General protection fault
Page fault

Machine check
OS-defined

Exception Class
Fault
Fault
Fault
Abort

Interrupt or trap

CSE 351, Summer 2019

12

YW UNIVERSITY of WASHINGTON L18: Processes

CSE 351, Summer 2019

Leading Up to Processes

+» System Control Flow
= Control flow
= Exceptional control flow
= Asynchronous exceptions (interrupts)
= Synchronous exceptions (traps & faults)

13

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Asynchronous Exceptions (Interrupts)

+» Caused by events external to the processor
" |ndicated by setting the processor’s interrupt pin(s) (wire into CPU)
= After interrupt handler runs, the handler returns to “next” instruction

+~ Examples:
= |/O interrupts
Hitting Ctrl-C on the keyboard
- Clicking a mouse button or tapping a touchscreen

- Arrival of a packet from a network
- Arrival of data from a disk
" Timer interrupt
Every few ms, an external timer chip triggers an interrupt
Used by the OS kernel to take back control from user programs

14

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Synchronous Exceptions

+» Caused by events that occur as a result of executing an
instruction:
" Traps
Intentional: transfer control to OS to perform some function

- Examples: system calls (e.qg., file I/0), breakpoint traps, special instructions
Returns control to “next” instruction

" Faults
Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

- Either re-executes faulting (“current”) instruction or aborts
= Aborts
Unintentional and unrecoverable

- Examples: parity error, machine check (hardware failure detected)
- Aborts current program

15

YW UNIVERSITY of WASHINGTON

L18: Processes

System Calls

+ Each system call has a unique ID number

+» Examples for Linux on x86-64:

Number
0
1
2
3
4

57
59
60
62

Name
read
write
open
close
stat
fork
execve
exit

kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to process

CSE 351, Summer 2019

16

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Traps Example: Opening File

+ Usercalls open (filename, options)
+~ Calls __open function, which invokes system call instruction syscall

00000000000e5d70 < open>:
e5d79: b8 02 00 00 0O0 mov S$0x2,%eax # open is syscall 2
ebd7e: 0f 05 syscall # return value in S%rax
e5d80: 48 3d 01 f0 ff ff cmp SOxXfffffffffffff001,Srax
ebdfa: c3 retq
User code OS Kernel code m %rax contains syscall number
m Otherargumentsin $rdi,
: o o o o o
syscally Exception R srsi, srdx, srl0, 5r8, sr9

cmp . m Returnvaluein $rax
Open file
Returns m Negative value is an error

corresponding to negative
errno

v

17

YW UNIVERSITY of WASHINGTON

L18: Processes

CSE 351, Summer 2019

Fault Example: Page Fault

int a[1000];

» User writes to memory location e Y

+ That portion (page) of user’s memory
is currently on disk

{

}

a[500] = 13;

80483b7: c7 05 10 94 04 08 0d movl S0xd, 0x8049d10
User code OS Kernel code
R exception: page fault handle_page_fault:
mov >

Create page and

v

» Page fault handler must load page into physical memory

» Returns to faulting instruction: mov is executed again!
Successful on second try

18

YW UNIVERSITY of WASHINGTON

L18: Processes

CSE 351, Summer 2019

Fault Example: Invalid Memory Reference

int a[10007];
int main ()

{

a[5000] = 13;
}

80483b7: c7 05 60 €3 04 08 0d movl $0xd, 0x804e360

User Process 0OS

l exception: page fault

movl handle_page fault:

. detect invalid address
signal process

4

Page fault handler detects invalid address
Sends SIGSEGV signal to user process

User process exits with Segmentation fault

19

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Summary

+» EXxceptions
" Events that require non-standard control flow
= Generated externally (interrupts) or internally (traps and
faults)

= After an exception is handled, one of three things may
happen:
- Re-execute the current instruction
- Resume execution with the next instruction
- Abort the process that caused the exception

20

YA UNIVERSITY of WASHINGTON

L18: Processes

Processes

+ Processes and context switching
+ Creating new processes
" fork(),exec* (),andwait ()

« Zombies

CSE 351, Summer 2019

21

CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON L18: Processes

What is a process? It’s an illusion!

~\

Process 1

Memory

Stack

Heap

Data
Code

CPU

Registers | srip

Disk

Chrome.exe

22

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

What is a process?

+» Another abstraction in our computer system
" Provided by the OS
" OS uses a data structure to represent each process

" Maintains the interface between the program and the
underlying hardware (CPU + memory)

+» What do processes have to do with exceptional
control flow?

= Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

+» What is the difference between:
= A processor? A program? A process?

23

CSE 351, Summer 2019

L18: Processes

YW UNIVERSITY of WASHINGTON

Processes

+ A process is an instance of a running program
" One of the most profound ideas in computer science

"= Not the same as “program” or “processor”

+ Process provides each program with two key

abstractions: Memory
= |ogical control flow Stack

- Each program seems to have exclusive use of the CPU I_El):;)

- Provided by kernel mechanism called context switching Code
= Private address space —

- Each program seems to have exclusive use of main memory

- Provided by kernel mechanism called virtual memory Registers

24

L18: Processes CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON

It’s an illusion!

What is a process?

Computer

MCPUH

CPU

Process 3
Process 2
“Memory” ‘
Process 4
ol Process 1 ‘»
eap \
Data “cpy” “Memory”
Code Stack
Heap
HCPUH Data

tICP U”

Disk

/Applications/

Chrome.exe

Slack.exe

PowerPoint.exe

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

What is a process? It’s an illusion!

Computer

Process 3
Process 2
“Memory” ‘ P 4
rocess
Stack Process 1 =
Heap A
Data “CPU” “Memory”
— Stack
Heap
“CPU” Data
llcpull fICPUH
Operating
System
CPU
Disk —
/Applications/
Chrome.exe Slack.exe PowerPoint.exe

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Multiprocessing: The lllusion

Memory Memory Memory
Stack Stack Stack
Heap Heap Heap
Data Data see Data
Code Code Code

CPU CPU CPU

Registers Registers Registers

» Computer runs many processes simultaneously

= Applications for one or more users

- Web browsers, email clients, editors, ...

= Background tasks

- Monitoring network & 1/0 devices
27

L18: Processes

CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON

Multiprocessing: The Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ces Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

+ Single processor executes multiple processes concurrently

" Process executions interleaved, CPU runs one at a time

= Address spaces managed by virtual memory system (later in course)

= Fxecution context (register values, stack, ...) for other processes saved in

memory

28

CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON L18: Processes

Multiprocessing

Memory
Stack : Stack Stack
Heap . Heap Heap
Data : Data ces Data
Code Code Code
Saved : Saved Saved
registers registers registers
CPU
Registers

% Context switch
1) Save current registers in memory

29

CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON L18: Processes

Multiprocessing
Memory
Stack Stack : Stack
Heap : Heap . Heap
Data : Data : ces Data
Code Code Code
Saved : Saved Saved
registers registers registers
CPU
Registers

+» Context switc
1) Save current registers in memory
2) Schedule next process for execution

30

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Multiprocessing
Memory
Stack Stack : Stack
Heap : Heap . Heap
Data : Data : ces Data
Code Code Code
Saved : Saved Saved
registers registers registers
CPU
Registers

+» Context switc
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

31

YW UNIVERSITY of WASHINGTON

L18: Processes

CSE 351, Summer 2019

Multiprocessing: The (Modern) Reality

Memory
Stack Stack Stack
Heap Heap Heap
Data Data ces Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU CPU .+ Multicore processors
Registers Registers " Multiple CPUs (“cores”) on single chip

= Share main memory (and some of the
caches)

= Each can execute a separate process
- Kernel schedules processes to cores

- Still constantly swapping processes

32

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Assume only one CPU

Concurrent Processes

+» Each process is a logical control flow

+ Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

= Otherwise, they are sequential

+» Example: (running on single core)
" Concurrent: A&B,A&C

= Sequential: B&C Process A Process B Process C

time

33

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Assume only one CPU

User’s View of Concurrency

+ Control flows for concurrent processes are physically
disjoint in time

" CPU only executes instructions for one process at a time

+» However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C Process A Process B Process C

User View

q

time

34

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Assume only one CPU

Context Switching

+ Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user

process
_—1. Memoy
| Kernel virtual memory |T invisible to
OxFFFF FFFF FFFF — user code
+ |In x86-64 Linux: (created at run time) . _
I Yorsp (stack pointer)
= Same address in each process -

refers to same shared T ———
i hared librari
memory location shared libraries

!

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Assume only one CPU

Context Switching

+ Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user
process

+ Context switch passes control flow from one process to
another and is performed using kernel code

Process A Process B

user code
kernel code } context switch

time
user code

kernel code } context switch

user code

36

YA UNIVERSITY of WASHINGTON

L18: Processes

Processes

+ Processes and context switching

+ Creating new processes
" fork () ,exec* (),andwait ()

« Zombies

CSE 351, Summer 2019

37

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Creating New Processes & Programs

Process 1 Process 2

“Memory” “Memory”
Stack Stack
Heap fork () Heap
Data > Data
Code Code
IICPUII IICPUII

Registers 4 Registers

_ J _ J
exec™* ()

Chrome.exe

38

CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON L18: Processes

Creating New Processes & Programs

+ fork-exec model (Linux):
= fork () creates a copy of the current process

" exec* () replaces the current process’ code and address

space with the code for a different program
- Family: execv, execl, execve, execle, execvp, execlp

" fork () and execve () are system calls

% Other system calls for process management:
" getpid()
" ex1it ()

" wait (),waitpid()

39

YW UNIVERSITY of WASHINGTON

L18: Processes CSE 351, Summer 2019

fork: Creating New Processes

+ pid _t fork(void)

= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

= Returns 0 to the child process

= Returns child’s process ID (PID) to the parent process

Child is almost identical to parent:

= Child gets an identical
(but separate) copy of the
parent’s virtual address
space

® Child has a different PID
than the parent

pid t pid = fork();

if (pid == 0) {
printf ("hello from child\n");
} else {

printf ("hello from parent\n");

}

+» forkis unigue (and often confusing) because it is called once

but returns “twice”

40

YW UNIVERSITY of WASHINGTON

L18: Processes

CSE 351, Summer 2019

Understanding fork

Process X (parent) Process Y (child)

» pid t pid = fork(); » pid t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }

41

YW UNIVERSITY of WASHINGTON

L18: Processes

CSE 351, Summer 2019

Understanding fork

Process X (parent) Process Y (child)

» pid t pid = fork(); » pid t pid = fork();
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }
pid t pid = fork(); 1 pid t pid = fork(); -
» if (pid == 0) { pid = ¥ » if (pid == 0) { pid = 0
printf ("hello from child\n"); printf ("hello from child\n");
} else { } else {
printf ("hello from parent\n"); printf ("hello from parent\n");
} }

42

YW UNIVERSITY of WASHINGTON

Understanding fork

Process X (parent)

L18: Processes

pid t pid
if

fork () ;
(pid == 0) {

printf ("hello from child\n");
} else {

»

printf ("hello from parent\n");
}

pid t pid fork (),

if (pid == 0) ({ pid = ¥

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

hello from parent

CSE 351, Summer 2019

Process Y (child)

pid t pid
if

fork () ;

(pid == 0) {

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

pid t pid = fork(); -
if (pid == 0) | pid =0

printf ("hello from child\n");
} else {

printf ("hello from parent\n");
}

hello from child

Which one appears first?

43

YW UNIVERSITY of WASHINGTON L18: Processes

Fork Example

CSE 351, Summer 2019

void forkl () {

int x = 1;
pid t pid = fork();
if (pid == 0)
printf ("Child has x = %d\n", ++x);
else
printf ("Parent has x = %d\n", --x);

}

printf ("Bye from process %$d with x = %d\n", getpid(), x);

X

D)

Both processes continue/start execution after fork

L)

= Child starts at instruction after the call to fork (storing into pid)

X

Can’t predict execution order of parent and child

D)

L)

o

D)

L)

Both processes start with x=1

= Subsequent changes to x are independent

0‘0

Shared open files: stdout is the same in both parent and child

44

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Modeling £fork with Process Graphs

« A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program

= Each vertex is the execution of a statement
" a — b means a happens before b

= Edges can be labeled with current value of variables
" printf vertices can be labeled with output

= Each graph begins with a vertex with no inedges

« Any topological sort of the graph corresponds to a feasible
total ordering

= Total ordering of vertices where all edges point from left to right

45

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Fork Example: Possible Output

void forkl () {

int x = 1;
pid t pid = fork();
if (pid == 0)
printf ("Child has x = %d\n", ++x);
else
printf ("Parent has x = %d\n", --x);

printf ("Bye from process %$d with x = %d\n", getpid(), x);

x=2 Child Bye
< 4 >® >®
++x printf printf

x=0 Parent Bye
>@ > >® >®
x=1 fork --X printf printf

46

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Fork-Exec

Note: the return values of fork and
exec* should be checked for errors

+ fork-exec model:
= fork () creates a copy of the current process

" exec* () replaces the current process’ code and address
space with the code for a different program
- Whole family of exec calls — see exec (3) and execve (2)

// Example arguments: path="/usr/bin/1s",

// argv[0]="/usr/bin/1s", argv/[1]="-ahl", argv[2]=NULL
void fork exec(char *path, char *argv[]) {
pid t pid = fork();
if (pid !'= 0) {
printf ("Parent: created a child %d\n", pid);
} else {

printf ("Child: about to exec a new program\n");
execv (path, argv);

}
printf ("This line printed by parent only!\n");

48

YW UNIVERSITY of WASHINGTON

L18: Processes CSE 351, Summer 2019

Exec-ing a new program

Stack

Heap

Data
Code: /usr/bin/bash

l fork()\

parent

Stack

Heap

Data
Code: /usr/bin/bash

Very high-level diagram of what
happens when you run the

command “1s” in a Linux shell:
This is the loading part of CALL!

child
Stack

exec* ()

Data
Code: /usr/bin/ls

49

L18: Processes CSE 351, Summer 2019

YW UNIVERSITY of WASHINGTON

it main (it arge, dar” oy 1) This is extra
execve Example 3 e line (non-testable)
argumerts Info progrum material

A
i |
Execute "/usr/bin/ls =1 lab4" in child process using current
environment:

myargv [argc] = NULL
myargv (1] +—> "-1"
(ﬂmyargv),myargV[O] j:ﬁ:—é /usr/bin/1s
Pa\v\‘ '
Grrm\/.s Q’F Po.m'jfers envp [n] = NULL ?r'ﬂf\ \ecals
+ ﬁﬁnﬁs envp [n—1] +—> "PWD=/homes/iws/Jhsia"
Cenviron Jenvp (0] +—> "USER=jhsia"
if ((pid = fork()) == 0) { /* Child runs program */
if (execve (myargv([0], myargv, environ) < 0) {

printf ("%s:

Command not found.\n'",

myargv [0]) ;

14

ex1t (1)

Run thelprintenj)command in a Linux shell to see your own environment variables

50

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Structure Of Null-terminated Bottom of stack

environment variable strings

the Stack when

Null-terminated

a hew program ___J|» command-line arg strings

Sta rtS ! envp[n] == NULL
L envp [n-1] environ
. . /_.(global var)
(E envp [0] “---- -<:\
o argvlargc] = NULL envp
‘ argv[argc-1] (in $rdx)
- B i
argv. | “—qe argv[0] J
(in $rsi)
argc Stack frame for
in2rd; libc start main
— (in 5rdi) — — Top of stack
This is extra Future stack frame for <1 7?:"’.‘ _ “"5\‘/
(non-test.akl)le) main rsi ary
materia

51

YW UNIVERSITY of WASHINGTON L18: Processes

CSE 351, Summer 2019

exit: Ending a process

+ vold exit (int status)

= Explicitly exits a process

- Status code: 0is used for a normal exit, nonzero for abnormal exit

«» The return statement frommain () also ends a
process in C

=" The return value is the status code

52

YW UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

Summary

< Processes

= At any given time, system has multiple active processes

" On a one-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes

- Implemented using exceptional control flow

+ Process management
" fork: one call, two returns
" execve: one call, usually no return
" wait orwaitpid: synchronization
" oexit: one call, noreturn

53

YA UNIVERSITY of WASHINGTON L18: Processes CSE 351, Summer 2019

BONUS SLIDES

Detailed examples:
« Consecutive forks

54

YW UNIVERSITY of WASHINGTON

L18: Processes

CSE 351, Summer 2019

Example: Two consecutive forks

void fork2 () {
printf ("LO\n") ;
fork () ;
printf ("L1\n");
fork () ;

printf ("Bye\n") ;

Bye

®
printf
Bye
> >»®

Bye

L1l
>0— >
printf fork printf
prfhtf
1.0 L1l Bye
o— >@ >@— >®

printf fork printf

Feasible output:
LO

L1

Bye

Bye

L1

Bye

Bye

f;rk printf

Infeasible output:
LO

Bye

L1

Bye

L1

Bye

Bye

55

YW UNIVERSITY of WASHINGTON

L18: Processes

Example: Three consecutive forks

+» Both parent and child can continue forking

void fork3(
printf (
fork () ;
printf ("L1\n") ;
fork () ;
printf ("L2\n") ;
fork () ;

) A
"LO\D") :

printf ("Bye\n") ;

LO

Bye

12 | Bye

Bye

11 |12 | Bye
‘ Bye
12 | Bye

Bye

11 |12 | Bye

CSE 351, Summer 2019

56

