Floating Point II
CSE 351 Summer 2019

Instructor:
Sam Wolfson

Teaching Assistants:
Rehaan Bhimani
Corbin Modica
Daniel Hsu

FPU = floating point unit

Be careful, you'll cause an overflow!
Administrivia

- Lab 1b now due Friday (7/12)
 - Submit `bits.c` and `lab1Breflect.txt` on Gradescope
 - Extra credit must be submitted separately: also submit `bits.c` to “Lab 1b Extra Credit” assignment

- Homework 2 out now, due next Wednesday (7/17)
 - On Integers, Floating Point, and x86-64
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover

- It’s a 58-page standard...
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation: \(xx \cdot yyyyy \)

 \[\begin{align*}
 &2^1 \quad 2^0 \quad 2^{-1} \quad 2^{-2} \quad 2^{-3} \quad 2^{-4} \\
 \end{align*} \]

- **Example:** \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10} \)
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number:
 \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4: 101.11₂
 - 2 and 7/8: 10.111₂
 - 47/64: 0.101111₂

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form 0.11111₁₂... are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2^i + ... → 1.0
 - Use notation 1.0 – ε
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form \(x \times 2^y \) (\(y \) can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/3) = 0.333333... (_{10}) =</td>
<td>0.01010101[01]... (_{2})</td>
</tr>
<tr>
<td>(1/5) =</td>
<td>0.001100110011[0011]... (_{2})</td>
</tr>
<tr>
<td>(1/10) =</td>
<td>0.0001100110011[0011]... (_{2})</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:

 #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0 \]

 #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ [.] \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2×10^7
 - In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6}
 - In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing 1/1,000,000,000
 - Normalized: \(1.0 \times 10^{-9} \)
 - Not normalized: \(0.1 \times 10^{-8}, 10.0 \times 10^{-10} \)
Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the “floating” of the binary point
 - Declare such variable in C as `float` (or `double`)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: \(1.011_2 \times 2^4 = 10110_2 = 22_{10}\)
 - Example: \(1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}\)

- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: \(1101.001_2 = 1.101001_2 \times 2^3\)

- Practice: Convert \(11.375_{10}\) to binary scientific notation
 \[
 2^{-1} = 0.5 \\
 2^{-2} = 0.25 \\
 2^{-3} = 0.125 \\
 2^{-4} = 0.0625
 \]
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^{s} \times 1.M \times 2^{(E-\text{bias})}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

```
 31 30  23 22  0
  S    E    M
```

1 bit 8 bits 23 bits
The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of $2^{w-1} - 1 = 127$
 - Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
 - Exponent 0 ($Exp = 0$) is represented as $E = 0b \ 0111 \ 1111$
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - $Exp = 1 \rightarrow E = 0b$
 - $Exp = 127 \rightarrow E = 0b$
 - $Exp = -63 \rightarrow E = 0b$
The Mantissa (Fraction) Field

\[-1^S \times (1 \cdot M) \times 2^{(E-bias)}\]

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000 is read as 1.1₂ = 1.5₁₀, not 0.1₂ = 0.5₁₀
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- **Accuracy** is a measure of the difference between the *actual value of a number* and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
 - **Example:** float pi = 3.14;
 - *pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)*
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

 - C variable declared as `double`
 - Exponent bias is now $2^{10} - 1 = 1023$
 - **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
 - **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers

- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - Special case: E = 0, M ≠ 0 are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of \(-126\) even though \(E = 0x00\)

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: \(\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}\)
 - Smallest denorm: \(\pm 0.0...01_{\text{two}} \times 2^{-126} = \pm 2^{-149}\)
 - There is still a gap between zero and the smallest denormalized number

This is extra (non-testable) material
Other Special Cases

- **E = 0xFF, M = 0:** ± ∞
 - *e.g.* division by 0
 - Still work in comparisons!

- **E = 0xFF, M ≠ 0:** Not a Number (NaN)
 - *e.g.* square root of negative number, 0/0, ∞–∞
 - NaN propagates through computations
 - Value of M can be useful in debugging

- **New largest value (besides ∞)?**
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}$
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation \((\text{bias} = 2^{w-1}-1)\) (if \(E=8\), bias is 127)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>(E)</th>
<th>(M)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: Overflow (Exp too large)
 - Between zero and smallest denorm: Underflow (Exp too small)
 - Between norm numbers: Rounding

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - 2^{-23}
 - What is this “step” when Exp = 100?
 - 2^{77}

- Distribution of values is denser toward zero
Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)

- Tiny 8-bit example:
 - Man = 1.001 01 rounded to M = 0b001
 - Man = 1.001 11 rounded to M = 0b010
 - Man = 1.001 10 rounded to M = 0b010
Floating Point Operations: Basic Idea

\[
\text{Value} = (-1)^s \times \text{Mantissa} \times 2^{\text{Exponent}}
\]

- \(x +_f y = \text{Round}(x + y) \)
- \(x \times_f y = \text{Round}(x \times y) \)

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then *round* the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- Floats with value $\pm\infty$ and NaN can be used in operations
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to rounding
 - Not associative: $(3.14+1e100) - 1e100 \neq 3.14 + (1e100 - 1e100)

 \[
 \begin{align*}
 0 & \neq 3.14 \\
 \end{align*}
 \]
 - Not distributive: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$

 \[
 \begin{align*}
 30.000000000000003553 & \neq 30 \\
 \end{align*}
 \]
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- Two common levels of precision:

 \[
 \begin{align*}
 \text{float} & \quad 1.0f & \quad \text{single precision (32-bit)} \\
 \text{double} & \quad 1.0 & \quad \text{double precision (64-bit)}
 \end{align*}
 \]

- \#include <math.h> to get INFINITY and NAN constants
 <float.h> for additional constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
 - Instead, use: \(\text{abs}(f1-f2) < 2^{-20} \)

 Some arbitrary threshold
Floating Point Conversions in C

- Casting between `int`, `float`, and `double` changes the bit representation

 - `int` → `float`
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible

 - `int` or `float` → `double`
 - Exact conversion (all 32-bit `int`s representable)

 - `long` → `double`
 - Depends on word size (32-bit is exact, 64-bit may be rounded)

 - `double` or `float` → `int`
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to T_{\min} (even if the value is a very big positive)
#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i = 0; i < 10; i++)
 f2 += 1.0/10.0;

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.9f\n", f1);
 printf("f2 = %10.9f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to Tmin in 2038
- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)