Floating Point II

CSE 351 Summer 2019

Instructor:
Sam Wolfson

Teaching Assistants:
Rehaan Bhimani Corbin Modica Daniel Hsu

FPU = floating point unit

Administrivia

* Lab 1b now due Friday (7/12)
- Submit bits.c and lab1Breflect.txt on Gradescope
- Extra credit must be submitted separately: also submit bits. c to "Lab 1b Extra Credit" assignment
* Homework 2 out now, due next Wednesday (7/17)
- On Integers, Floating Point, and x86-64

Floating Point Topics

* Fractional binary numbers
* IEEE floating-point standard

* Floating-point operations and rounding
* Floating-point in C

* There are many more details that we won't cover
- It's a 58-page standard...

Floating Point Summary

* Floats also suffer from the fixed number of bits available to represent them
- Can get overflow/underflow, just like ints
- "Gaps" produced in representable numbers means we can lose precision, unlike ints
- Some "simple fractions" have no exact representation (e.g. 0.2)
- "Every operation gets a slightly wrong result"
* Floating point arithmetic not associative or distributive
- Mathematically equivalent ways of writing an expression may compute different results
* Never test floating point values for equality!
* Careful when converting between ints and floats!

Representation of Fractions

* "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

* Example: $1 \underbrace{10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}}=2.625_{10}$

Fractional Binary Numbers

* Representation
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Fractional Binary Numbers

* Value
- 5 and 3/4 101.112
- 2 and $7 / 8$
- 47/64

Representation

```
101.112
    10.1112
    0.10111112
```

* Observations
- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form $0.111111_{\text {... } 2}$ are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Limits of Representation

* Limitations:
- Even given an arbitrary number of bits, can only exactly represent numbers of the form $x^{*} 2^{y}$ (y can be negative)
- Other rational numbers have repeating bit representations

Value:

- $1 / 3=0.333333 \ldots{ }_{10}=0.01010101[01]_{\ldots 2}$
- $1 / 5=0.20 .001100110011[0011] \ldots 2$
- $1 / 10=0.1 \quad 0.0001100110011[0011]_{\ldots 2}$

Binary Representation:

Fixed Point Representation

* Implied binary point. Two example schemes:
\#1: the binary point is between bits 2 and 3
$b_{7} b_{6} b_{5} b_{4} b_{3}[.] b_{2} b_{1} b_{0}$
\#2: the binary point is between bits 4 and 5
$b_{7} b_{6} b_{5}[.] b_{4} b_{3} b_{2} b_{1} b_{0}$
* Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
* Fixed point $=$ fixed range and fixed precision
- range: difference between largest and smallest numbers possible
- precision: smallest possible difference between any two numbers
* Hard to pick how much you need of each!

Floating Point Representation

* Analogous to scientific notation
- In Decimal:
- Not 12000000, but $\kappa^{2} 1.2 \times 10{ }^{7} \sim \ln$ C: 1.2 e 7
- Not 0.0000012, but $1,2 \times 10^{-6} \quad$ In C: $1.2 \mathrm{e}-6$
- In Binary:
- Not 1100@.000, but 1.1×2^{4}
- Not 0.000101, but $1.01 \times 2 \times 2$
* We have to divvy up the bits we have (e.g., 32) among:
- the sign (1 bit)
- the mantissa (significand)
- the exponent

Scientific Notation (Decimal)

mantissa

* Normalized form: exactly one digit (non-zero) to left of decimal point
* Alternatives to representing $1 / 1,000,000,000$
- Normalized:
1.0×10^{-9}
- Not normalized:
$0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (Binary)

* Computer arithmetic that supports this called floating point due to the "floating" of the binary point
- Declare such variable in C as float (or double)

Scientific Notation Translation

$$
\begin{aligned}
& 2^{-1}=0.5 \\
& 2^{-2}=0.25 \\
& 2^{-3}=0.125 \\
& 2^{-4}=0.0625
\end{aligned}
$$

* Convert from scientific notation to binary point
- Perform the multiplication by shifting the decimal until the exponent disappears
- Example: $1.011_{2} \times 2^{4}=10110_{2}=22_{10}$
- Example: $1.011_{2} \times 2^{-2}=0.01011_{2}=0.34375_{10}$
* Convert from binary point to normalized scientific notation
- Distribute out exponents until binary point is to the right of a single digit
- Example: $1101.001_{2}=1.101001_{2} \times 2^{3}$
* Practice: Convert 11.375_{10} to binary scientific notation

$$
1011.011 \Rightarrow \quad 1.011011 \times 2^{3}
$$

Floating Point Topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

IEEE Floating Point

* IEEE 754
- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
* Driven by numerical concerns
- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
- Scientists mostly won out
- Nice standards for rounding, overflow, underflow, but...
- Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

* Use normalized, base 2 scientific notation:
- Value: $\quad \pm 1 \times$ Mantissa $\times 2^{\text {Exponent }}$
- Bit Fields:
$(-1)^{\mathrm{S}} \times 1 . \mathrm{M} \times 2^{(\mathrm{E}-\mathrm{bias})}$
* Representation Scheme:
- Sign bit (0 is positive, 1 is negative)
- Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector \mathbf{M}
- Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field

* Use biased notation
- Read exponent as unsigned, but with bias of $2^{w-1}-1=127$
- Representable exponents roughly $1 / 2$ positive and $1 / 2$ negative
- Exponent $0(\operatorname{Exp}=0)$ is represented as $E=0 b 01111111$
* Why biased?
- Makes floating point arithmetic easier
- Makes somewhat compatible with two's complement
* Practice: To encode in biased notation, add the bias then encode in unsigned:
- Exp=1 $\rightarrow 128 \rightarrow E=0 b 10000000$
- $\operatorname{Exp}=127 \rightarrow 254 \rightarrow E=0 b\| \| \| O$
- Exp $=-63 \rightarrow 64 \rightarrow E=0 b 0 r 000000$

The Mantissa (Fraction) Field

$$
(-1)^{S} \times(1 . M) \times 2^{(E-b i a s)}
$$

* Note the implicit 1 in front of the M bit vector
- Example: 0b $00111111 \sqrt{100} 00000000000000000000$ is read as $1.1_{2}=1.5_{10}$, not $0.1_{2}=0.5_{10}$
- Gives us an extra bit of precision
* Mantissa "limits"
- Low values near $\mathrm{M}=0 \mathrm{bO} 0 . .0$ are close to $2^{\text {Exp }}$
- High values near $M=0 b 1 \ldots 1$ are close to $2^{\text {Exp }}+1$

Peer Instruction Question

* What is the correct value encoded by the following floating point number?
- Ob 0 $\underbrace{10000000}_{\text {exp }} \underbrace{11000000000000000000000}_{\text {mantiusa }}$
- Vote at http://pollev.com/wolfson
A. +0.75

$$
\text { B. }+1.5
$$

C. +2.75
D. +3.5
E. We're lost...

$$
\begin{array}{ll}
\text { exp: } & 128-12.7=1 \\
\text { mont: } & 1.1 .1 \times 2 \\
& =11.1 \\
& =2+1+1 / 2=3.5
\end{array}
$$

Precision and Accuracy

* Precision is a count of the number of bits in a computer word used to represent a value
- Capacity for accuracy
* Accuracy is a measure of the difference between the actual value of a number and its computer representation
- High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
- Example: float pi = 3.14;
- pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

* Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1=1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

* But wait... what happened to zero?
- Using standard encoding $0 \times 00000000=1.0 \times 2$
- Special case: E and M all zeros $=0$
- Two zeros! But at least 0x00000000 = 0 like integers
* New numbers closest to 0:
- $a=1.0 \ldots 0_{2} \times 2^{-126}=2^{-126}$
- $b=1.0 \ldots 01_{2} \times 2^{-126}=2^{-126}+2^{-149}$

- Normalization and implicit 1 are to blame
- Special case: $\mathrm{E}=0, \mathrm{M} \neq 0$ are denormalized numbers

Denorm Numbers

* Denormalized numbers
- No leading 1
- Uses implicit exponent of -126 even though $E=0 \times 00$
* Denormalized numbers close the gap between zero and the smallest normalized number
- Smallest norm: $\pm 1.0 \ldots 0_{\mathrm{two}} \times 2^{-126}= \pm 2^{-126}$
- Smallest denorm: $\pm 0.0 \ldots 01_{\text {two }} \times 2^{-126}= \pm 2^{-149}$
- There is still a gap between zero and the smallest denormalized number

Other Special Cases

$* \mathrm{E}=0 \times \mathrm{FF}, \mathrm{M}=0: \pm \infty$

- e.g. division by 0
- Still work in comparisons!
* $\mathrm{E}=0 \times \mathrm{FF}, \mathrm{M} \neq 0$: Not a Number (NaN)
- e.g. square root of negative number, $0 / 0, \infty-\infty$
- NaN propagates through computations
- Value of M can be useful in debugging
* New largest value (besides ∞)?
- E = OxFF has now been taken!
- $\mathrm{E}=0 \times \mathrm{FFE}$ has largest: $1.1 . . .1_{2} \times 2^{127}=2^{128}-2^{104}$

Floating Point Encoding Summary

$\begin{gathered} \text { smallest E } \\ \text { (all zeroes) } \end{gathered}$	E	M	Meaning
	0x00	0	± 0
	0×00	non-zero	\pm denorm num
everything else	0x01-0xFE	anything	\pm norm num
largest E (all ones)	0xFF	0	$\pm \infty$
	0xFF	non-zero	NaN

Summary

* Floating point approximates real numbers: 3130

$$
\begin{array}{l|l}
\hline \mathrm{E}(8) & \mathrm{M}(23) \\
\hline
\end{array}
$$

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias $=2^{\mathrm{w}-1}-1$) (if $\mathrm{E}=8$, bias is 127)
- Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

\mathbf{E}	\mathbf{M}	Meaning
0×00	0	± 0
0×00	non-zero	\pm denorm num
$0 \times 01-0 \times F E$	anything	\pm norm num
$0 \times F F$	0	$\pm \infty$
$0 \times F F$	non-zero	NaN

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Distribution of Values

* What ranges are NOT representable?
- Between largest norm and infinity Overflow (Exp too large)
- Between zero and smallest denorm Underflow (Exp too small)
- Between norm numbers? Rounding
* Given a FP number, what's the bit pattern of the next largest representable number? if $M=0 b 0 . . .00$, then $2^{E E L P_{P}} \times 1.0$ largest representable number? if $M=060 \ldots 01$, then $2^{k \rho_{P} \times} \times\left(1+2^{-23}\right)$
- What is this "step" when Exp $=0$? $2^{-23} \quad$ diff $^{23}=2^{\text {Exp }} 23$
- What is this "step" when Exp $=100$? 2^{77}
* Distribution of values is denser toward zero

Floating Point Rounding

* The IEEE 754 standard actually specifies different rounding modes:
- Round to nearest, ties to nearest even digit
- Round toward $+\infty$ (round up)
- Round toward $-\infty$ (round down)
- Round toward 0 (truncation)
* Tiny 8-bit example:
- Man = $1.0010^{\text {br }}$ rounded to $M=0 b 001$

- $M a n=1.00111$ rounded to $M=0 b 010$
- $M a n=1.001 \tilde{10}$ rounded to $M=0 b 010$

Floating Point Operations: Basic Idea

$$
\text { Value }=(-1)^{S} \times \text { Mantissa } \times 2^{\text {Exponent }}
$$

$* X+_{f} Y=\operatorname{Round}(x+y)$
$* x *_{f} y=R o u n d(x * y)$

* Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specified precision (width of M)
- Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

* Overflow yields $\pm \infty$ and underflow yields 0
* Floats with value $\pm \infty$ and NaN can be used in operations
- Result usually still $\pm \infty$ or NaN, but not always intuitive
* Floating point operations do not work like real math, due to rounding rounded off
- Not associative:
- Not distributive:

$$
30.000000000000003553
$$

- Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

Floating point topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...

Floating Point in C

* Two common levels of precision:

float	$1.0 f$	single precision (32-bit)
double	1.0	double precision (64-bit)

* \#include <math.h> to get INFINITY and NAN constants <float.h> for additional constants
*. Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
- Instead, use: abs (f1-f2) < 2-20

Floating Point Conversions in C

* Casting between int, float, and double changes the bit representation
- int \rightarrow float
- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible
- int or float \rightarrow double
- Exact conversion (all 32-bit ints representable)
- long \rightarrow double
- Depends on word size (32-bit is exact, 64-bit may be rounded)
- double or float \rightarrow int
- Truncates fractional part (rounded toward zero)
- "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++)
        f2 += 1.0/10.0;
    printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.9f\n", f1);
    printf("f2 = %10.9f\n\n", f2);
    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "Yes" : "no" );
    return 0;
}
```


Floating Point Summary

* Floats also suffer from the fixed number of bits available to represent them
- Can get overflow/underflow
- "Gaps" produced in representable numbers means we can lose precision, unlike ints
- Some "simple fractions" have no exact representation (e.g. 0.2)
- "Every operation gets a slightly wrong result"
* Floating point arithmetic not associative or distributive
- Mathematically equivalent ways of writing an expression may compute different results
* Never test floating point values for equality!
* Careful when converting between ints and floats!

Number Representation Really Matters

* 1991: Patriot missile targeting error
- clock skew due to conversion from integer to floating point
* 1996: Ariane 5 rocket exploded ($\$ 1$ billion)
- overflow converting 64-bit floating point to 16 -bit integer
* 2000: Y2K problem
- limited (decimal) representation: overflow, wrap-around
* 2038: Unix epoch rollover
- Unix epoch = seconds since 12am, January 1, 1970
- signed 32-bit integer representation rolls over to TMin in 2038
* Other related bugs:
- 1982: Vancouver Stock Exchange 10\% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

