Floating Point II
CSE 351 Summer 2019

Instructor:
Sam Wolfson

Teaching Assistants:
Rehaan Bhimani
Corbin Modica
Daniel Hsu

Be careful, you'll cause an overflow!
FPU = floating point unit
Administrivia

- Lab 1b now due Friday (7/12)
 - Submit `bits.c` and `lab1Breflect.txt` on Gradescope
 - Extra credit must be submitted separately: also submit `bits.c` to “Lab 1b Extra Credit” assignment

- Homework 2 out now, due next Wednesday (7/17)
 - On Integers, Floating Point, and x86-64
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover

- It’s a 58-page standard...
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!

- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
Fractional Binary Numbers

- Bits to right of “binary point” represent fractional powers of 2
- Represents rational number:
 \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4: 101.112
 - 2 and 7/8: 10.1112
 - 47/64: 0.1011112

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form $0.111111...2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only exactly represent numbers of the form $x \times 2^y$ (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3 = 0.333333..._{10}$</td>
<td>0.01010101[01]...$_2$</td>
</tr>
<tr>
<td>$1/5 = 0.2$</td>
<td>0.001100110011[0011]...$_2$</td>
</tr>
<tr>
<td>$1/10 = 0.1$</td>
<td>0.0001100110011[0011]...$_2$</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:

 #1: the binary point is between bits 2 and 3

 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [.] \ b_2 \ b_1 \ b_0 \]

 #2: the binary point is between bits 4 and 5

 \[b_7 \ b_6 \ b_5 \ [.] \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have.

- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2×10^7 In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing $1/1,000,000,000$
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point

- Declare such variable in C as `float` (or `double`)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$

- Convert from binary point to **normalized** scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

- Practice: Convert 11.375_{10} to binary scientific notation

 $1011.011 \Rightarrow 1.011011 \times 2^3$
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- **IEEE 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - **Scientists**/numerical analysts want them to be as **real** as possible
 - **Engineers** want them to be **easy to implement** and **fast**
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - **Float operations can be an order of magnitude slower than integer ops**
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E
The Exponent Field

- **Use biased notation**
 - Read exponent as unsigned, but with *bias of* $2^{w-1}-1 = 127$
 - Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
 - Exponent 0 ($\text{Exp} = 0$) is represented as $E = 0b \, 0111 \, 1111$

- **Why biased?**
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- **Practice:** To encode in biased notation, add the bias then encode in unsigned:
 - $\text{Exp} = 1 \rightarrow 2^8 \rightarrow E = 0b \, 0000 \, 0000$
 - $\text{Exp} = 127 \rightarrow 254 \rightarrow E = 0b \, 1111 \, 1110$
 - $\text{Exp} = -63 \rightarrow 64 \rightarrow E = 0b \, 0000 \, 0000$
The Mantissa (Fraction) Field

\[(-1)^S \times (1 \cdot M) \times 2^{(E-bias)}\]

- Note the implicit 1 in front of the M bit vector
 - Example: \(0b\ 0011\ 1111\ 1100\ 0000\ 0000\ 0000\ 0000\ 0000\)
 - is read as \(1.1_2 = 1.5_{10}\), not \(0.1_2 = 0.5_{10}\)
 - Gives us an extra bit of precision
- Mantissa “limits”
 - Low values near \(M = 0b0...0\) are close to \(2^{\text{Exp}}\)
 - High values near \(M = 0b1...1\) are close to \(2^{\text{Exp}+1}\)
Peer Instruction Question

- What is the correct value encoded by the following floating point number?
 - 0b 0 10000000 11000000000000000000000
 - Vote at http://pollev.com/wolfson

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost…

\[
\begin{align*}
\text{exp:} & \quad 128 - 127 = 1 \\
\text{mont:} & \quad 1.11 \times 2^1 \\
& \quad = 11.1 \\
& \quad = 2 + 1 + \frac{1}{2} = 3.5
\end{align*}
\]
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- **Accuracy** is a measure of the difference between the *actual value of a number* and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
- **Example:** `float pi = 3.14;`
 - `pi` will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

- C variable declared as `double`
- Exponent bias is now $2^{10} - 1 = 1023$
- **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
- **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding $0x00000000 = 1.0 \times 2^{-127}$
 - **Special case:** E and M all zeros = 0
 - Two zeros! But at least $0x00000000 = 0$ like integers

- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - **Special case:** $E = 0$, $M \neq 0$ are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0...01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number
Other Special Cases

- \(E = 0xFF, \ M = 0: \pm \infty \)
 - e.g. division by 0
 - Still work in comparisons!

- \(E = 0xFF, \ M \neq 0: \) Not a Number (NaN)
 - e.g. square root of negative number, 0/0, \(\infty-\infty \)
 - NaN propagates through computations
 - Value of \(M \) can be useful in debugging

- New largest value (besides \(\infty \))?
 - \(E = 0xFF \) has now been taken!
 - \(E = 0xFE \) has largest: \(1.1\ldots1_2 \times 2^{127} = 2^{128} - 2^{104} \)
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 - 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

- **E** represents the exponent field.
- **M** represents the mantissa field.
- **Meaning** describes the value represented by the encoding.
Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = $2^{w-1}-1$) (if E=8, bias is 127)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>

Table: Floating Point Representation

- S: Sign bit
- E (8): Exponent (biased)
- M (23): Mantissa

Example:
- 0x00: ± 0
- 0x00 non-zero: ± denorm num
- 0x01 – 0xFE: ± norm num
- 0xFF: ± ∞
- 0xFF non-zero: NaN
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- **Floating-point operations and rounding**
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: Overflow (Exp too large)
 - Between zero and smallest denorm: Underflow (Exp too small)
 - Between norm numbers?

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0? 2^{-23}
 - What is this “step” when Exp = 100? 2^{77}

- Distribution of values is denser toward zero
Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)

- Tiny 8-bit example:
 - Man = 1.001 01 rounded to $M = 0b001$
 - Man = 1.001 11 rounded to $M = 0b010$
 - Man = 1.001 10 rounded to $M = 0b010$

This is extra (non-testable) material
Floating Point Operations: Basic Idea

Value = \((-1)^s \times \text{Mantissa} \times 2^{\text{Exponent}}\)

\[
\begin{array}{c|c|c}
S & E & M \\
\end{array}
\]

- \(x +_f y = \text{Round}(x + y)\)
- \(x \times_f y = \text{Round}(x \times y)\)

Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- Floats with value $\pm\infty$ and NaN can be used in operations
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to **rounding**
 - Not associative: $3.14+1\times100-1\times100 \neq 3.14+(1\times100-1\times100)$
 - Not distributive: $100\times(0.1+0.2) \neq 100\times0.1+100\times0.2$
 - $30.000000000000003553 \neq 30$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- Two common levels of precision:
 - `float` 1.0f single precision (32-bit)
 - `double` 1.0 double precision (64-bit)

- `#include <math.h>` to get INFINITY and NAN constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
 - Instead, use: `abs(f1-f2) < 2^{-20}` Some arbitrary threshold
Floating Point Conversions in C

- Casting between `int`, `float`, and `double` changes the bit representation
 - `int` → `float`
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - `int` or `float` → `double`
 - Exact conversion (all 32-bit ints representable)
 - `long` → `double`
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - `double` or `float` → `int`
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to T_{min} (even if the value is a very big positive)
#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i = 0; i < 10; i++)
 f2 += 1.0/10.0;

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.9f\n", f1);
 printf("f2 = %10.9f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- **Other related bugs**:
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)