
CSE 351, Summer 2019L06: Floating Point II

Floating Point II
CSE 351 Summer 2019

Instructor:
Sam Wolfson

Teaching Assistants:
Rehaan Bhimani
Corbin Modica
Daniel Hsu

FPU = floating point unit

CSE 351, Summer 2019L06: Floating Point II

Administrivia

v Lab 1b now due Friday (7/12)
§ Submit bits.c and lab1Breflect.txt on Gradescope
§ Extra credit must be submitted separately: also submit
bits.c to “Lab 1b Extra Credit” assignment

v Homework 2 out now, due next Wednesday (7/17)
§ On Integers, Floating Point, and x86-64

2

CSE 351, Summer 2019L06: Floating Point II

Floating Point Topics

v Fractional binary numbers
v IEEE floating-point standard
v Floating-point operations and rounding
v Floating-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

3

CSE 351, Summer 2019L06: Floating Point II

Floating Point Summary

v Floats also suffer from the fixed number of bits
available to represent them
§ Can get overflow/underflow, just like ints
§ “Gaps” produced in representable numbers means we can

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

v Floating point arithmetic not associative or
distributive
§ Mathematically equivalent ways of writing an expression

may compute different results
v Never test floating point values for equality!
v Careful when converting between ints and floats!

4

CSE 351, Summer 2019L06: Floating Point II

Representation of Fractions

v “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

Example 6-bit
representation:

v Example: 10.10102 = 1×21 + 1×2-1 + 1×2-3 = 2.62510

5

xx.yyyy
21

20 2-1 2-2 2-3 2-4

CSE 351, Summer 2019L06: Floating Point II

• • •
b–1.

Fractional Binary Numbers

v Representation
§ Bits to right of “binary point” represent fractional powers of 2
§ Represents rational number:

bi bi–1 b2 b1 b0 b–2 b–3 b–j• • •• • •
1
2
4

2i–1

2i

• • •

1/2
1/4
1/8

2–j

bk ×2
k

k=- j

i
å

6

CSE 351, Summer 2019L06: Floating Point II

Fractional Binary Numbers

v Value Representation
§ 5 and 3/4
§ 2 and 7/8
§ 47/64

v Observations
§ Shift left = multiply by power of 2
§ Shift right = divide by power of 2
§ Numbers of the form 0.111111…2 are just below 1.0

§ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
§ Use notation 1.0 – ε

101.112

10.1112
0.1011112

7

CSE 351, Summer 2019L06: Floating Point II

Limits of Representation

v Limitations:
§ Even given an arbitrary number of bits, can only exactly

represent numbers of the form x * 2y (y can be negative)
§ Other rational numbers have repeating bit representations

Value: Binary Representation:
• 1/3 = 0.333333…10 = 0.01010101[01]…2

• 1/5 = 0.001100110011[0011]…2

• 1/10 = 0.0001100110011[0011]…2

8

CSE 351, Summer 2019L06: Floating Point II

Fixed Point Representation

v Implied binary point. Two example schemes:
#1: the binary point is between bits 2 and 3

b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

v Wherever we put the binary point, with fixed point
representations there is a trade off between the
amount of range and precision we have

v Fixed point = fixed range and fixed precision
§ range: difference between largest and smallest numbers possible
§ precision: smallest possible difference between any two numbers

v Hard to pick how much you need of each!
9

CSE 351, Summer 2019L06: Floating Point II

Floating Point Representation

v Analogous to scientific notation
§ In Decimal:

• Not 12000000, but 1.2 x 107 In C: 1.2e7
• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

§ In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

v We have to divvy up the bits we have (e.g., 32) among:
§ the sign (1 bit)
§ the mantissa (significand)
§ the exponent

10

CSE 351, Summer 2019L06: Floating Point II

Scientific Notation (Decimal)

v Normalized form: exactly one digit (non-zero) to left
of decimal point

v Alternatives to representing 1/1,000,000,000
§ Normalized: 1.0×10-9

§ Not normalized: 0.1×10-8,10.0×10-10

11

6.0210 × 1023

radix (base)decimal point

exponentmantissa

CSE 351, Summer 2019L06: Floating Point II

Scientific Notation (Binary)

v Computer arithmetic that supports this called floating
point due to the “floating” of the binary point
§ Declare such variable in C as float (or double)

12

1.012 × 2-1

radix (base)binary point

exponentmantissa

CSE 351, Summer 2019L06: Floating Point II

Scientific Notation Translation
v Convert from scientific notation to binary point

§ Perform the multiplication by shifting the decimal until the exponent
disappears
• Example: 1.0112×24 = 101102 = 2210

• Example: 1.0112×2-2 = 0.010112 = 0.3437510

v Convert from binary point to normalized scientific notation
§ Distribute out exponents until binary point is to the right of a single digit

• Example: 1101.0012 = 1.1010012×23

v Practice: Convert 11.37510 to binary scientific notation

13

CSE 351, Summer 2019L06: Floating Point II

Floating Point Topics

v Fractional binary numbers
v IEEE floating-point standard
v Floating-point operations and rounding
v Floating-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

14

CSE 351, Summer 2019L06: Floating Point II

IEEE Floating Point
v IEEE 754

§ Established in 1985 as uniform standard for floating point arithmetic
§ Main idea: make numerically sensitive programs portable
§ Specifies two things: representation and result of floating operations
§ Now supported by all major CPUs

v Driven by numerical concerns
§ Scientists/numerical analysts want them to be as real as possible
§ Engineers want them to be easy to implement and fast
§ In the end:

• Scientists mostly won out
• Nice standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float operations can be an order of magnitude slower than integer ops

15

CSE 351, Summer 2019L06: Floating Point II

Floating Point Encoding

v Use normalized, base 2 scientific notation:
§ Value: ±1 × Mantissa × 2Exponent

§ Bit Fields: (-1)S × 1.M × 2(E–bias)

v Representation Scheme:
§ Sign bit (0 is positive, 1 is negative)
§ Mantissa (a.k.a. significand) is the fractional part of the

number in normalized form and encoded in bit vector M
§ Exponent weights the value by a (possibly negative) power

of 2 and encoded in the bit vector E

16

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE 351, Summer 2019L06: Floating Point II

The Exponent Field

v Use biased notation
§ Read exponent as unsigned, but with bias of 2w-1-1 = 127
§ Representable exponents roughly ½ positive and ½ negative
§ Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111

v Why biased?
§ Makes floating point arithmetic easier
§ Makes somewhat compatible with two’s complement

v Practice: To encode in biased notation, add the bias then
encode in unsigned:
§ Exp = 1 → → E = 0b
§ Exp = 127 → → E = 0b
§ Exp = -63 → → E = 0b

17

CSE 351, Summer 2019L06: Floating Point II

The Mantissa (Fraction) Field

v Note the implicit 1 in front of the M bit vector
§ Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000

is read as 1.12 = 1.510, not 0.12 = 0.510

§ Gives us an extra bit of precision

v Mantissa “limits”
§ Low values near M = 0b0…0 are close to 2Exp

§ High values near M = 0b1…1 are close to 2Exp+1
18

(-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

CSE 351, Summer 2019L06: Floating Point II

Peer Instruction Question

v What is the correct value encoded by the following
floating point number?
§ 0b 0 10000000 11000000000000000000000

§ Vote at http://pollev.com/wolfson

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost…

19

http://pollev.com/wolfson

CSE 351, Summer 2019L06: Floating Point II

Precision and Accuracy

v Precision is a count of the number of bits in a
computer word used to represent a value
§ Capacity for accuracy

v Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

§ High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

§ Example: float pi = 3.14;
• pi will be represented using all 24 bits of the mantissa (highly

precise), but is only an approximation (not accurate)

20

CSE 351, Summer 2019L06: Floating Point II

Need Greater Precision?

v Double Precision (vs. Single Precision) in 64 bits

§ C variable declared as double
§ Exponent bias is now 210–1 = 1023
§ Advantages: greater precision (larger mantissa),

greater range (larger exponent)
§ Disadvantages: more bits used,

slower to manipulate
21

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

CSE 351, Summer 2019L06: Floating Point II

Representing Very Small Numbers

v But wait… what happened to zero?
§ Using standard encoding 0x00000000 =
§ Special case: E and M all zeros = 0

• Two zeros! But at least 0x00000000 = 0 like integers

v New numbers closest to 0:
§ a = 1.0…02×2-126 = 2-126

§ b = 1.0…012×2-126 = 2-126 + 2-149

§ Normalization and implicit 1 are to blame
§ Special case: E = 0, M ≠ 0 are denormalized numbers

22

0
+∞-∞

Gaps!

a

b

CSE 351, Summer 2019L06: Floating Point II

Denorm Numbers

v Denormalized numbers
§ No leading 1
§ Uses implicit exponent of –126 even though E = 0x00

v Denormalized numbers close the gap between zero
and the smallest normalized number
§ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

§ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

23

So much
closer to 0

This is extra
(non-testable)

material

CSE 351, Summer 2019L06: Floating Point II

Other Special Cases

v E = 0xFF, M = 0: ± ∞
§ e.g. division by 0
§ Still work in comparisons!

v E = 0xFF, M ≠ 0: Not a Number (NaN)
§ e.g. square root of negative number, 0/0, ∞–∞
§ NaN propagates through computations
§ Value of M can be useful in debugging

v New largest value (besides ∞)?
§ E = 0xFF has now been taken!
§ E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

24

CSE 351, Summer 2019L06: Floating Point II

Floating Point Encoding Summary

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

25

smallest E
(all zeroes)

largest E
(all ones)

everything else

CSE 351, Summer 2019L06: Floating Point II

Summary

v Floating point approximates real numbers:

§ Handles large numbers, small numbers, special numbers
§ Exponent in biased notation (bias = 2w-1–1) (if E=8, bias is 127)

• Outside of representable exponents is overflow and underflow

§ Mantissa approximates fractional portion of binary point
• Implicit leading 1 (normalized) except in special cases
• Exceeding length causes rounding

26

S E (8) M (23)
31 30 23 22 0

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE 351, Summer 2019L06: Floating Point II

Floating point topics

v Fractional binary numbers
v IEEE floating-point standard
v Floating-point operations and rounding
v Floating-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

27

CSE 351, Summer 2019L06: Floating Point II

Distribution of Values

v What ranges are NOT representable?
§ Between largest norm and infinity
§ Between zero and smallest denorm
§ Between norm numbers?

v Given a FP number, what’s the bit pattern of the next
largest representable number?
§ What is this “step” when Exp = 0?
§ What is this “step” when Exp = 100?

v Distribution of values is denser toward zero

28

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)
Underflow (Exp too small)
Rounding

CSE 351, Summer 2019L06: Floating Point II

Floating Point Rounding

v The IEEE 754 standard actually specifies different
rounding modes:
§ Round to nearest, ties to nearest even digit
§ Round toward +∞ (round up)
§ Round toward −∞ (round down)
§ Round toward 0 (truncation)

v Tiny 8-bit example:
§ Man = 1.001 01 rounded to M = 0b001
§ Man = 1.001 11 rounded to M = 0b010
§ Man = 1.001 10 rounded to M = 0b010

29

This is extra
(non-testable)

material

S E M

1 4 3

CSE 351, Summer 2019L06: Floating Point II

Floating Point Operations: Basic Idea

v x +f y = Round(x + y)

v x *f y = Round(x * y)

v Basic idea for floating point operations:
§ First, compute the exact result
§ Then round the result to make it fit into the specified

precision (width of M)
• Possibly over/underflow if exponent outside of range

30

S E M

Value = (-1)S×Mantissa×2Exponent

CSE 351, Summer 2019L06: Floating Point II

Mathematical Properties of FP Operations

v Overflow yields ±∞ and underflow yields 0
v Floats with value ±∞ and NaN can be used in

operations
§ Result usually still ±∞ or NaN, but not always intuitive

v Floating point operations do not work like real math,
due to rounding
§ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)

0 3.14

§ Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

§ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

31

CSE 351, Summer 2019L06: Floating Point II

Floating point topics

v Fractional binary numbers
v IEEE floating-point standard
v Floating-point operations and rounding
v Floating-point in C

v There are many more details that we won’t cover
§ It’s a 58-page standard…

32

CSE 351, Summer 2019L06: Floating Point II

Floating Point in C

v Two common levels of precision:
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

v #include <math.h> to get INFINITY and NAN
constants

v Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!
§ Instead, use: abs(f1-f2) < 2-20

33

!!!

Some
arbitrary
threshold

CSE 351, Summer 2019L06: Floating Point II

Floating Point Conversions in C

v Casting between int, float, and double changes
the bit representation
§ int → float

• May be rounded (not enough bits in mantissa: 23)
• Overflow impossible

§ int or float → double
• Exact conversion (all 32-bit ints representable)

§ long → double
• Depends on word size (32-bit is exact, 64-bit may be rounded)

§ double or float → int
• Truncates fractional part (rounded toward zero)
• “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
34

!!!

CSE 351, Summer 2019L06: Floating Point II

Floating Point and the Programmer

35

#include <stdio.h>

int main(int argc, char* argv[]) {
float f1 = 1.0;
float f2 = 0.0;
int i;
for (i = 0; i < 10; i++)
f2 += 1.0/10.0;

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf("f1 = %10.9f\n", f1);
printf("f2 = %10.9f\n\n", f2);

f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

return 0;
}

CSE 351, Summer 2019L06: Floating Point II

Floating Point Summary

v Floats also suffer from the fixed number of bits
available to represent them
§ Can get overflow/underflow
§ “Gaps” produced in representable numbers means we can

lose precision, unlike ints
• Some “simple fractions” have no exact representation (e.g. 0.2)
• “Every operation gets a slightly wrong result”

v Floating point arithmetic not associative or
distributive
§ Mathematically equivalent ways of writing an expression

may compute different results
v Never test floating point values for equality!
v Careful when converting between ints and floats!

36

CSE 351, Summer 2019L06: Floating Point II

Number Representation Really Matters
v 1991: Patriot missile targeting error

§ clock skew due to conversion from integer to floating point

v 1996: Ariane 5 rocket exploded ($1 billion)
§ overflow converting 64-bit floating point to 16-bit integer

v 2000: Y2K problem
§ limited (decimal) representation: overflow, wrap-around

v 2038: Unix epoch rollover
§ Unix epoch = seconds since 12am, January 1, 1970
§ signed 32-bit integer representation rolls over to TMin in 2038

v Other related bugs:
§ 1982: Vancouver Stock Exchange 10% error in less than 2 years
§ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
§ 1997: USS Yorktown “smart” warship stranded: divide by zero
§ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

37

