YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Memory, Data, & Addressing |

CSE 351, Summer 2019

Instructor:
Sam Wolfson

Teaching Assistants:
Rehaan Bhimani
Daniel Hsu

Corbin Modica

ON A SCALE OF 1Tb 10,
HOW LIKELY IS IT THAT
THIS QUESTON 1S
USING BINARY?

(.u?
wt-lA\T:S AY?)

http://xkcd.com/953/

CSE 351, Summer 2019

http://xkcd.com/676/

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Administrivia

+» Pre-Course Survey due tonight @ 11:59 pm
+» Homework 1 due Friday (6/28)
+» Lab 0 out today, due Monday (7/1)

« All course materials can be found on the website
schedule (check it out!)

+» Get your machine set up for this class (VM or attu)
as soon as possible!

" Bring your laptop to section tomorrow if you are having trouble.

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Converting to Base 10

+» Can convert from any base to base 10
" 0b110=110,=(1 % 2%)+ (1 x 2% + (0 X 29 =6,
= OXA5 = A5, = (10 X 16%) + (5 X 16°) = 165,

+» We learned to think in base 10, so this is fairly natural
for us

+» Challenge: Convert into other bases (e.g. 2, 16)

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Challenge Question

+» Convert 13,5 into binary

+ Hints: 13,,=?
" 2°=8 13=8+4+1
" 22=4 Binary:0b1101
s 21=7 Dec: 84 1
| 20=1

+» Think on your own for a minute, then discuss with
your neighbor(s)

= No voting for this question.

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Converting from Decimal to Binary

« @Given a decimal number N:

= List increasing powers of 2 from right to left until = N

= Then from left to right, ask is that (power of 2) < N?

- If YES, put a 1 below and subtract that power from N
- If NO, put a 0 below and keep going

+» Example: 13 to binary | 24=16| 23=8 | 22=4 | 21=2 | 20=1
) 1 1 0 1

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Converting from Decimal to Base B

« @Given a decimal number N:

= List increasing powers of B from right to left until = N

= Then from left to right, ask is that (power of B) < N?

- If YES, put how many of that power go into N and subtract from N
- If NO, put a 0 below and keep going

+» Example: 165 to hex 162=256 | 161=16 | 16°=1
0 A 5

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Converting Binary < Hexadecimal

« Hex — Binary Base 10 Base 2 Base 16
%) 5]5]51%] %)
= Substitute hex digits, then drop any 1 0001 1
leading zeros 2 0010 2
: 3 0011 3
[.
Example: 0x2D to binary 2 0100 2
. 0x2 is 0b0010, OxD is 0b1101 5 | o101 5
- Drop two leading zeros, answer is 0b101101 6 0110 6
7 0111 7
_ 8 1000 8
« Binary — Hex 9 1001 9
= Pad with leading zeros until multiple of | 10 | 1016 | A
. 11 1011 B
4, then |
, then substitute each group of 4 1> 1100 C
= Example: 0b101101 13 1101 D
- Pad to Ob 0010 1101 14 | 1110 E
. Substitute to get 0x2D >, 11111] F

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Binary — Hex Practice

CSE 351, Summer 2019

+ Convert 0b100110110101101
" How many digits? 15 1 0001 1
= Pad: 0100 1101 10101101 2 0010 2

3 0011 3
= Substitute: Ox4DAD 1 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Base Comparison
+~ Why does all of this matter?

%) 0000 %)

" Humans think about numbers in base 1 0001 1
10, but computers “think” about 2 0019 2
numbers in base 2 3 | eell | 3

) i i 4 0100 4

" Binary encoding is what allows 5 0101 5
computers to do all of the amazing 6 0110 6
things that they do! 7 0111 7

8 1000 8

9 1001 9

« You should have this table 10 | 1010 A
. 11 1011 B
memorized by the end of the class 12 1100 c
"= Might as well start now! 13 1101 D
14 1110 E

15 1111 F

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Numerical Encoding

+» AMAZING FACT: You can represent anything
countable using numbers!
= Need to agree on an encoding

= Kind of like learning a new language

+» Examples:
= Decimal Integers: 0—0b0, 1-0b1, 2—0b10, etc.
" English Letters: CSE—0x435345, yay—0x796179
= Emoticons: @ 0x0, & 0x1, & 0x2, © 0x3, © 0x4, €& 0x5

10

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Binary Encoding

+» With N binary digits, how many “things” can you
represent?
= Need N binary digits to represent n things, where 2N > n
= Example: 5 binary digits for alphabet because 2> =32 > 26

+ A binary digit is known as a bit
+» A group of 4 bits (1 hex digit) is called a nybble

+~ A group of 8 bits (2 hex digits) is called a byte
= 1 bit = 2 things, 1 nybble — 16 things, 1 byte — 256 things

11

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

So What’s It Mean?

+» A sequence of bits can have many meanings!

+ Consider the hex sequence Ox4E6F21

= Common interpretations include:
- The decimal number 5140257
- The characters “No!”
- The background color of this slide
 The real number 7.203034 x 10-3°

% |t is up to the program/programmer to decide how to
interpret the sequence of bits

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Binary Encoding — Colors

+ RGB — Red, Green, Blue
= Additive color model (light): byte (8 bits) for each color

= Commonly seen in hex (in HTML, photo editing, etc.)
—0xFFD 700,

= Examples: Blue—0x0000FF,
Wihze—O0xFFFFFF, Deep Pink—0xFF1493

: s
B — CET

Colors

Standard Custom

Colors:

ul4
v

Color model: |RGB
Red: 75 =

CSE 351, Summer 2019

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Binary Encoding — Characters/Text

+ ASCIlI Encoding (www.asciitable.com)

= American Standard Code for Information Interchange

Dec HxOct Char Dec Hx Oct Html Chr [Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0 000 NUL {(null) 32 20 040 Space| 64 40 100 @ [| 96 60 140 `
1 1 001 30H (start of heading) 33 21 041 ! ! 65 41 101 &«#65; A | 97 61 141 &«#97; a
2 2 002 STX (start of text) 34 22 04z &«#34; " 66 42 102 «#66; B | 98 62 142 &«#98; b
3 3 003 ETX (end of text) 35 23 043 # # 67 43 103 «#67; C | 99 63 143 &«#99; C
4 4 004 EOT (end of transmission) 36 24 044 $ § 65 44 104 «#68; D |100 64 144 &«#100; d
5 5 005 ENQ (encuiry) 37 25 045 % % 69 45 105 «#69; E (101 65 145 &#l01; e
6 6 006 ACK {acknowledge) 38 26 046 & & 70 46 106 «#70; F |102 66 146 f £
7 7 007 BEL (bell) 39 27 047 ' ! 71 47 107 &«#71; G |103 67 147 &«#103: ¢
8 8 010 BS (backspace) 40 28 050 &«#40; | 72 43 110 H H |104 68 150 &«#104; h
9 9 011 TAEB (horizontal tab) 41 29 051 l;) 73 49 111 I I |105 69 151 l05; 1
10 A 012 LF (NL line feed, new line)| 42 24 052 * * 74 4k 112 «#74; T |106 64 152 &«#106;]
11 B 013 VT (wvertical tab) 43 2B 053 + + 75 4B 113 «#75; K |107 6B 153 k k
12 C 0l4 FF (NP form feed, new page)| 44 2C 054 , , 76 4C 114 «#76; L |108 6C 154 l 1
13 D 015 CR (carriage return) 45 2D 055 - - 77 4D 115 &«#77; M (109 6D 155 l09; n
14 E 016 30 (shift out) 46 Z2E 056 . . 78 4E 116 &«#78; N [110 6E 156 n n
15 F 017 51 (shift in) 47 2F 057 «#47; / 79 4F 117 &«#79; 0 [111 6F 157 &#lll:; o
16 10 020 DLE (data link escape) 43 30 060 + 0 80 50 120 &«#80; P (112 70 160 &#ll2: p
17 11 021 DCl (dewvice control 1) 49 31 061 1 1 81 51 121 «#81; 0 [113 71 161 q: d
18 12 022 DCZ (device control 2) 50 32 062 &«#50; 2 82 52 122 «#82; R |114 72 162 &#ll4; ¢
19 13 023 DC3 (device control 3) 51 33 063 &«#51; 3 83 53 123 S.; 5 [115 73 163 &#ll5; s
20 14 024 DC4 (device control 4) 52 34 064 &«#52; 4 84 54 124 «#84; T |116 74 164 l6; T
21 15 025 NAK [(negative acknowledge) 53 35 065 5 5 85 55 125 &«#85; U [117 75 165 u: u
22 16 026 SYN (synchronous idle) 54 36 066 &«#54; 6 86 56 126 &«#86; V [118 76 166 v:; v
23 17 027 ETE (end of trans. block) 55 37 067 7 7 87 57 127 &«#87; W |119 77 167 w W
24 18 030 CAN (cancel) 56 38 070 «#56; & 88 58 130 X X |120 78 170 &#l20; x
25 19 031 EM (end of medium) 57 39 071 «#57; 9 89 59 131 Y ¥ (121 79 171 «#l2l:; ¥
26 14 032 SUB (substitute) 58 34 072 : : 90 54 132 &«#90; Z |122 7A 172 &#l22; z
27 1B 033 ESC (escape) 59 3B 073 &«#59; ; 91 5B 133 &«#91; [|123 7B 173 { {
28 1C 034 F5 (file separator) 60 3C 074 &«#60; < 92 5C 134 &«#92; \ |124 7C 174 &#l24;
29 1D 035 G5 (group separator) 61 3D 075 l; = 93 5D 135 &«#93;] |125 7D 175 &#l25; }
30 1E 036 RS (record separator) 62 3E 076 > > 94 SE 136 &«#94; *~ |126 7E 176 &#l26; ~
31 1F 037 US ({unit separator) 63 3F 077 &«#63; ? 95 S5F 137 &«#95; _ |127 7F 177 &«#l27; DEL 14

Source: www.LookupTables.com

http://www.asciitable.com/

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Binary Encoding — Files and Programs

+» At the lowest level, all digital data is stored as bits!

+ Layers of abstraction keep everything comprehensible
= Data/files are groups of bits interpreted by program

" Program is actually groups of bits being interpreted by your
CPU

+» Computer Memory Demo (if time)
" Fromvim: %! xxd

" Fromemacs: M-x hexl-mode

15

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Summary

<+ Humans think about numbers in decimal; computers
think about numbers in binary

= Base conversion to go between them

®= Hexadecimal is more human-readable than binary

+ All information on a computer is binary

% Binary encoding can represent anything!

= Computer/program needs to know how to interpret the bits

16

YA/ UNIVERSITY of WASHINGTON

Roadmap

LO2: Memory & Data |

CSE 351, Summer 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly get_mpg: Processes
. pushqg srbp)

language: movq srsp, Srbp Virtual memory

. Memory allocation

Popq srbp Javavs. C

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A A
coae. 1000100111000010 A
110000011111101000011111 Windows 10 05X Yosemire —o=ter
| |
v v

Computer

system:

17

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE 351, Summer 2019

Memory, Data, and Addressing

+» Hardware - High Level Overview
+ Representing information as bits and bytes
" Memory is a byte-addressable array
" Machine “word” size = address size = register size
+» Organizing and addressing data in memory
" Endianness — ordering bytes in memory
+» Manipulating data in memory using C
+ Boolean algebra and bit-level manipulations

18

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Hardware: Physical View

GIGABYTE :

00000

SG/IERBYTE

EnM/NE £

I/O controller

Storage connections

19

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: Logical View

CPU

Bus

USB

Etc.

CSE 351, Summer 2019

20

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: 351 View (version 0)

4 R

\LPU Y,

«+ The CPU executes instructions

+ Memory stores data A

How are data
and instructions

+ Binary encoding! represented?

%
" |nstructions are just data

CSE 351, Summer 2019

21

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Aside: Why Base 2?

+ Electronic implementation

= Easy to store with bi-stable elements
= Reliably transmitted on noisy and inaccurate wires

— 0 > < 1 > — 00—
3.3V —
2.8V — 7\
0.5V — / \\’\f
/——\,/_J
0.0V —

+» Other bases possible, but not yet viable:
= DNA data storage (base 4: A, C, G, T) is a hot topic
" Quantum computing

22

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Binary Encoding Additional Details

+» Because storage is finite in reality, everything is
stored as “fixed” length
= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

= Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the
number 4 is 0b00000100

Least Significant Bit (LSB)
Most Significant Bit (MSB)

23

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Hardware: 351 View (version 0)

a instructions

data

\LPU Y,

+ To execute an instruction, the CPU must:
1) Fetch the instruction
2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation
4) (if applicable) Write the result back to memory

24

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Hardware: 351 View (version 1)

(i-cache

take 469

instructions

\C P U registersj

« More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers

« Instruction fetching is hardware-controlled
» Data movement is programmer-controlled (assembly)

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Hardware: 351 View (version 1)

(i-cache

take 469

« We will start by learning about Memory

instructions

/
How does a

program find its
data in memory?/

o

26

YA/ UNIVERSITY of WASHINGTON

LO2: Memory & Data |

CSE 351, Summer 2019

An Address Refers to a Byte of Memory

=0b ... 01
S -
o’ igle of dda =2 hes 967 o
D*QQ 6“5(((
lowest cddr: AR hif}\esi’ Addr
A
oL 10w |0\

)
0’0

)
0’0

)
0’0

Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
= Each address is just a number represented in fixed-length binary

Programs refer to bytes in memory by their addresses
= Domain of possible addresses = address space

= \We can store addresses as data to “remember” where other data is in

memory

But not all values fit in a single byte... (e.g. 351)
= Many operations actually use multi-byte values

27

CSE 351, Summer 2019

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Historically (still true in some assembly languages), all
instructions were exactly the size of a word

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits = 2¥ addresses

+ Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
2%4 bytes ~ 1.8 x 10%° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

29

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Word-Oriented Memory Organization

» Addresses still specify
locations of bytes in memory

= Addresses of successive words
differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

= Address of wordO, 1, ... 10?

64-bit
Words

Addr

??

32-bit
Words

Addr

2?

Addr

??

Addr

2?

Addr

2?

Addr

2?

Addr.
(hex)

Ox00
0Ox01
0x02
Ox03
0x04
0x05
Ox06
0Ox07
Ox08
0x09
Ox0A
0Ox0B
Ox0C
Ox0D
OxOE
OxOF

CSE 351, Summer 2019

30

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE 351, Summer 2019

Address of a Word = Address of First Byte in the Word

» Addresses still specify
locations of bytes in memory

= Addresses of successive words
differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

= Address of word O, 1, ... 10?

64-bit
Words

» Address of word
= address of first byte in word

" The address of any chunk of
memory is given by the address
of the first byte

= Alignment

Addr

0000

32-bit
Words

Addr

0000

Addr

0008

Addr

0004

Addr

0008

Addr

0012

Addr.
(hex)

Ox00
0Ox01
0x02
Ox03
0x04
Ox05
Ox06
0Ox07
Ox08
0x09
Ox0A
0Ox0B
Ox0C
Ox0D
OxOE
OxOF

31

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

A Picture of Memory (64-bit word view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

= A 64-bit pointer I : \

WI” fl t on one row 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07
v T ¥ T ¢T VT ¢ T ¥ T ¢ 1 ¥

Address
¥ | 0x00
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox

32

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

A Picture of Memory (64-bit word view)

+» A “64-bit (8-byte) word-aligned” view of memory:

= In this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

A

= A 64-bit pointer I \

0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07
1 21 vV

Address

¥ | 0x00
7 | Ox08
0x10
Ox18
0x20
Ox28
0x30
0Ox38
0x40
0Ox48

will fit on one row

v

~

)
0x08 0x09 OxOA O0xOB OXOC OXxOD OxOE

33

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

[64-bit example]
()

Addresses and Pointers

pointers are 64-bits wide

big-endian

+» An address refers to a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+» Value 504 stored at I R A 0x00
address 0x08 ~»00:00:00;00;00;00;01;F8]| 0x08
R 0x10

" 504, =1F84; R Ox18
=0x 00 ... 00 01 F8 I O O A 0w

. L1 4 r bbb 10x28

+ Pointer stored at 1 1 1 1 1 0§30
0x38 points to 000000, 00,00:00:0008] 0x38
R 0x40

address 0x08] Ox48

34

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

[64-bit example]
()

Addresses and Pointers

pointers are 64-bits wide

big-endian

+» An address refers to a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+ Pointer stored at L r v b loxoo
0x48 points to ~»00:00:00:00:00:00:01:F8]| 0x08
I T O O O I e X

address 0x38 T loxs

= Pointer to a pointer! I R S N R SN 0x20
b b r b | 0x28

« |s the data stored | 0x30

at 0x08 a pointer? {00 0000000000 00]08] 0x38

, IR 0x40

" Could be, depending “00700:00:00: 00 00 00 38| 0x48
on how you use it

35

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Data Representations

+ Sizes of data types (in bytes)

CSE 351, Summer 2019

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long 8 8
long double 8 16
(reference) pointer * 4 8

To use “bool” in C, you must #include <stdbool.h>

[address size = word size]

36

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data |

Memory Alignment

+ Aligned: Primitive object of K bytes must
have an address that is a multiple of K

®= More about alignment later in the course

1

2
4
8

+» For good memory system performance, Intel (x86)

char

short

int, float

long, double, pointers

recommends data be aligned

= However the x86-64 hardware will work correctly otherwise

- Design choice: x86-64 instructions are variable bytes long

CSE 351, Summer 2019

Bytes

0x00
0Ox01
0x02
Ox03
0x04
0x05
0Ox06
Ox07

37

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Byte Ordering

+» How should bytes within a word be ordered in
memory?
= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4
(in decimal: 2712847316)

L)

L)

+ By convention, ordering of bytes called endianness

" The two options are big-endian and little-endian
- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

38

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Byte Ordering

+» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address
s+ Little-endian (x86, x86-64)

= Least significant byte has lowest address
+ Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+~ Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 O0x101 0x102 0Ox103
Big-Endian al | b2 | c3 | d4

0x100 Ox101 0x102 0x103
Little-Endian d4 | c3 b2 | al

39

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Decimal: 12345
Binary: 0011 0000 0011 1001

Byte Ordering Examples | S o 3 s

IA32, x86-64 SPARC
(little-endian) (big-endian)
int x = 12345; 0x00 0x00
// or x = 0x3039; 0x01 0x01
0x02 0x02
0x03 0x03
32-bit 64-bit 32-bit 64-bit
long int y = |1A32 x86-64 SPARC SPARC
(long int) x; 0x00] 39 [=—| 39 | 0x00 oxo00| 0O 00 |ox00
0x01] 30 [—| 30 | 0x01 oxo01| OO 00 |[ox01
0x02| 00 [—| 00 | 0x02 ox02| 30 00 |oxo02
0x03] 00 [—| 00 | 0x03 ox03| 39 00 |ox03
(A long int is 00 | oxo4 00 |o0x04
. 00 | oxos 00 |0x05
ize of a wor
the size of a wo d) 00 | oxo6 30 |0x06
00 | oxo7 39 |oxo7

40

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE 351, Summer 2019

Endianness

% Endianness only applies to memory storage
+» Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

= Compiler and assembler generate correct behavior (software)
+» Endianness still shows up:

" |ogical issues: accessing different amount of data than how
you stored it (e.g. store 1nt, access byte as a char)

= Need to know exact values to debug memory errors

= Manual translation to and from machine code (in 351)

42

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Summary

+» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

= Object of K bytes is aligned if it has an address that is a
multiple of K

+ Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

CSE 351, Summ

er 2019

43

