
CSE 351, Summer 2019L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351, Summer 2019

Instructor:
Sam Wolfson

Teaching Assistants:
Rehaan Bhimani
Daniel Hsu
Corbin Modica

http://xkcd.com/953/

http://xkcd.com/676/

CSE 351, Summer 2019L02: Memory & Data I

Administrivia

v Pre-Course Survey due tonight @ 11:59 pm
v Homework 1 due Friday (6/28)
v Lab 0 out today, due Monday (7/1)

v All course materials can be found on the website
schedule (check it out!)

v Get your machine set up for this class (VM or attu)
as soon as possible!
§ Bring your laptop to section tomorrow if you are having trouble.

2

CSE 351, Summer 2019L02: Memory & Data I

Converting to Base 10

v Can convert from any base to base 10
§ 0b110 = 1102 = (1 × 22) + (1 × 21) + (0 × 20) = 610

§ 0xA5 = A516 = (10 × 161) + (5 × 160) = 16510

v We learned to think in base 10, so this is fairly natural
for us

v Challenge: Convert into other bases (e.g. 2, 16)

3

CSE 351, Summer 2019L02: Memory & Data I

Challenge Question

v Convert 1310 into binary

v Hints:
§ 23 = 8
§ 22 = 4
§ 21 = 2
§ 20 = 1

v Think on your own for a minute, then discuss with
your neighbor(s)
§ No voting for this question.

4

1310 = ?
13 = 8 + 4 + 1
Binary: 0b 1 1 0 1
Dec: 8 4 1

CSE 351, Summer 2019L02: Memory & Data I

Converting from Decimal to Binary

v Given a decimal number N:
§ List increasing powers of 2 from right to left until ≥ N
§ Then from left to right, ask is that (power of 2) ≤ N?

• If YES, put a 1 below and subtract that power from N
• If NO, put a 0 below and keep going

v Example: 13 to binary

5

24=16 23=8 22=4 21=2 20=1

0 1 1 0 1

CSE 351, Summer 2019L02: Memory & Data I

Converting from Decimal to Base B

v Given a decimal number N:
§ List increasing powers of B from right to left until ≥ N
§ Then from left to right, ask is that (power of B) ≤ N?

• If YES, put how many of that power go into N and subtract from N
• If NO, put a 0 below and keep going

v Example: 165 to hex

6

162=256 161=16 160=1

0 A 5

CSE 351, Summer 2019L02: Memory & Data I

Converting Binary ↔ Hexadecimal

v Hex → Binary
§ Substitute hex digits, then drop any

leading zeros
§ Example: 0x2D to binary

• 0x2 is 0b0010, 0xD is 0b1101
• Drop two leading zeros, answer is 0b101101

v Binary → Hex
§ Pad with leading zeros until multiple of

4, then substitute each group of 4
§ Example: 0b101101

• Pad to 0b 0010 1101
• Substitute to get 0x2D

7

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE 351, Summer 2019L02: Memory & Data I

Binary → Hex Practice

v Convert 0b100110110101101
§ How many digits?
§ Pad:
§ Substitute:

8

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

15
0100 1101 1010 1101

0x4DAD

CSE 351, Summer 2019L02: Memory & Data I

Base Comparison

v Why does all of this matter?
§ Humans think about numbers in base

10, but computers “think” about
numbers in base 2

§ Binary encoding is what allows
computers to do all of the amazing
things that they do!

v You should have this table
memorized by the end of the class
§ Might as well start now!

9

Base 10 Base 2 Base 16
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

CSE 351, Summer 2019L02: Memory & Data I

Numerical Encoding

v AMAZING FACT: You can represent anything
countable using numbers!
§ Need to agree on an encoding
§ Kind of like learning a new language

v Examples:
§ Decimal Integers: 0→0b0, 1→0b1, 2→0b10, etc.
§ English Letters: CSE→0x435345, yay→0x796179
§ Emoticons: 😃 0x0, 😞 0x1, 😎 0x2, 😇 0x3, 😈 0x4, 🙋 0x5

10

CSE 351, Summer 2019L02: Memory & Data I

Binary Encoding

v With N binary digits, how many “things” can you
represent?
§ Need N binary digits to represent 𝑛 things, where 2N ≥ 𝑛
§ Example: 5 binary digits for alphabet because 25 = 32 > 26

v A binary digit is known as a bit
v A group of 4 bits (1 hex digit) is called a nybble
v A group of 8 bits (2 hex digits) is called a byte

§ 1 bit → 2 things, 1 nybble → 16 things, 1 byte → 256 things

11

CSE 351, Summer 2019L02: Memory & Data I

So What’s It Mean?

v A sequence of bits can have many meanings!

v Consider the hex sequence 0x4E6F21
§ Common interpretations include:

• The decimal number 5140257
• The characters “No!”
• The background color of this slide
• The real number 7.203034 × 10-39

v It is up to the program/programmer to decide how to
interpret the sequence of bits

12

CSE 351, Summer 2019L02: Memory & Data I

Binary Encoding – Colors

v RGB – Red, Green, Blue
§ Additive color model (light): byte (8 bits) for each color
§ Commonly seen in hex (in HTML, photo editing, etc.)
§ Examples: Blue→0x0000FF, Gold→0xFFD700,

White→0xFFFFFF, Deep Pink→0xFF1493

13

CSE 351, Summer 2019L02: Memory & Data I

Binary Encoding – Characters/Text

v ASCII Encoding (www.asciitable.com)
§ American Standard Code for Information Interchange

14

http://www.asciitable.com/

CSE 351, Summer 2019L02: Memory & Data I

Binary Encoding – Files and Programs

v At the lowest level, all digital data is stored as bits!

v Layers of abstraction keep everything comprehensible
§ Data/files are groups of bits interpreted by program
§ Program is actually groups of bits being interpreted by your

CPU

v Computer Memory Demo (if time)
§ From vim: %!xxd
§ From emacs: M-x hexl-mode

15

CSE 351, Summer 2019L02: Memory & Data I

Summary

v Humans think about numbers in decimal; computers
think about numbers in binary
§ Base conversion to go between them
§ Hexadecimal is more human-readable than binary

v All information on a computer is binary

v Binary encoding can represent anything!
§ Computer/program needs to know how to interpret the bits

16

CSE 351, Summer 2019L02: Memory & Data I

Roadmap

17

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE 351, Summer 2019L02: Memory & Data I

Memory, Data, and Addressing

v Hardware - High Level Overview
v Representing information as bits and bytes
§ Memory is a byte-addressable array
§ Machine “word” size = address size = register size

v Organizing and addressing data in memory
§ Endianness – ordering bytes in memory

v Manipulating data in memory using C
v Boolean algebra and bit-level manipulations

18

CSE 351, Summer 2019L02: Memory & Data I

Hardware: Physical View

19

CPU
(socket)

Bus connections

I/O controller

Storage connections

Memory

CSE 351, Summer 2019L02: Memory & Data I

Hardware: Logical View

20

CPU Memory

Disks Net USB Etc.

Bus

CSE 351, Summer 2019L02: Memory & Data I

Hardware: 351 View (version 0)

v The CPU executes instructions
v Memory stores data

v Binary encoding!
§ Instructions are just data

21

Memory

CPU

?

How are data
and instructions

represented?

CSE 351, Summer 2019L02: Memory & Data I

Aside: Why Base 2?

v Electronic implementation
§ Easy to store with bi-stable elements
§ Reliably transmitted on noisy and inaccurate wires

v Other bases possible, but not yet viable:
§ DNA data storage (base 4: A, C, G, T) is a hot topic
§ Quantum computing

22

0.0V
0.5V

2.8V
3.3V

0 1 0

CSE 351, Summer 2019L02: Memory & Data I

Binary Encoding Additional Details

v Because storage is finite in reality, everything is
stored as “fixed” length
§ Data is moved and manipulated in fixed-length chunks
§ Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)
§ Leading zeros now must be included up to “fill out” the fixed

length

v Example: the “eight-bit” representation of the
number 4 is 0b00000100

23

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE 351, Summer 2019L02: Memory & Data I

Hardware: 351 View (version 0)

v To execute an instruction, the CPU must:
1) Fetch the instruction
2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation
4) (if applicable) Write the result back to memory

24

Memory

CPU

?
data

instructions

CSE 351, Summer 2019L02: Memory & Data I

Hardware: 351 View (version 1)

25

Memory

CPU

take 469

registers

i-cache

data

instructions

v More CPU details:
§ Instructions are held temporarily in the instruction cache
§ Other data are held temporarily in registers

v Instruction fetching is hardware-controlled
v Data movement is programmer-controlled (assembly)

CSE 351, Summer 2019L02: Memory & Data I

Hardware: 351 View (version 1)

26

Memory

CPU

take 469

registers

i-cache

data

instructions

v We will start by learning about Memory

How does a
program find its
data in memory?

CSE 351, Summer 2019L02: Memory & Data I

An Address Refers to a Byte of Memory

v Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
§ Each address is just a number represented in fixed-length binary

v Programs refer to bytes in memory by their addresses
§ Domain of possible addresses = address space
§ We can store addresses as data to “remember” where other data is in

memory

v But not all values fit in a single byte… (e.g. 351)
§ Many operations actually use multi-byte values

27

00•••0

FF
•••F

• • •

CSE 351, Summer 2019L02: Memory & Data I

Machine “Words”

v Instructions encoded into machine code (0’s and 1’s)
§ Historically (still true in some assembly languages), all

instructions were exactly the size of a word

v We have chosen to tie word size to address size/width
§ word size = address size = register size
§ word size = 𝑤 bits → 2𝑤 addresses

v Current x86 systems use 64-bit (8-byte) words
§ Potential address space: 𝟐𝟔𝟒 addresses

264 bytes » 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

§ Actual physical address space: 48 bits
29

CSE 351, Summer 2019L02: Memory & Data I

Word-Oriented Memory Organization
v Addresses still specify

locations of bytes in memory
§ Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

§ Address of word 0, 1, … 10?

30

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr.
(hex)

CSE 351, Summer 2019L02: Memory & Data I

Address of a Word = Address of First Byte in the Word

v Addresses still specify
locations of bytes in memory
§ Addresses of successive words

differ by word size (in bytes):
e.g. 4 (32-bit) or 8 (64-bit)

§ Address of word 0, 1, … 10?

v Address of word
= address of first byte in word
§ The address of any chunk of

memory is given by the address
of the first byte

§ Alignment

31

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE 351, Summer 2019L02: Memory & Data I

A Picture of Memory (64-bit word view)

v A “64-bit (8-byte) word-aligned” view of memory:
§ In this type of picture, each row is composed of 8 bytes
§ Each cell is a byte
§ A 64-bit pointer

will fit on one row

32

0x00
0x
0x
0x
0x
0x
0x
0x
0x
0x

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

one word

Address

CSE 351, Summer 2019L02: Memory & Data I

A Picture of Memory (64-bit word view)

v A “64-bit (8-byte) word-aligned” view of memory:
§ In this type of picture, each row is composed of 8 bytes
§ Each cell is a byte
§ A 64-bit pointer

will fit on one row

33

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0D 0x0E 0x0F0x0C0x09 0x0A 0x0B0x08

CSE 351, Summer 2019L02: Memory & Data I

Addresses and Pointers

v An address refers to a location in memory
v A pointer is a data object that holds an address

§ Address can point to any data

v Value 504 stored at
address 0x08
§ 50410 = 1F816

= 0x 00 ... 00 01 F8

v Pointer stored at
0x38 points to
address 0x08

34

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CSE 351, Summer 2019L02: Memory & Data I

Addresses and Pointers

v An address refers to a location in memory
v A pointer is a data object that holds an address

§ Address can point to any data

v Pointer stored at
0x48 points to
address 0x38
§ Pointer to a pointer!

v Is the data stored
at 0x08 a pointer?
§ Could be, depending

on how you use it
35

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

64-bit example
(pointers are 64-bits wide)

big-endian

CSE 351, Summer 2019L02: Memory & Data I

Data Representations

v Sizes of data types (in bytes)

36To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE 351, Summer 2019L02: Memory & Data I

Memory Alignment

v Aligned: Primitive object of 𝐾 bytes must
have an address that is a multiple of 𝐾
§ More about alignment later in the course

v For good memory system performance, Intel (x86)
recommends data be aligned
§ However the x86-64 hardware will work correctly otherwise

• Design choice: x86-64 instructions are variable bytes long

37

𝐾 Type
1 char
2 short
4 int, float
8 long, double, pointers

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

Bytes

CSE 351, Summer 2019L02: Memory & Data I

Byte Ordering

v How should bytes within a word be ordered in
memory?
§ Example: store the 4-byte (32-bit) int:
0x a1 b2 c3 d4

v By convention, ordering of bytes called endianness
§ The two options are big-endian and little-endian

• In which address does the least significant byte go?
• Based on Gulliver’s Travels: tribes cut eggs on different sides

(big, little)

38

(in decimal: 2712847316)

CSE 351, Summer 2019L02: Memory & Data I

Byte Ordering

v Big-endian (SPARC, z/Architecture)
§ Least significant byte has highest address

v Little-endian (x86, x86-64)
§ Least significant byte has lowest address

v Bi-endian (ARM, PowerPC)
§ Endianness can be specified as big or little

v Example: 4-byte data 0xa1b2c3d4 at address 0x100

39

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE 351, Summer 2019L02: Memory & Data I

Byte Ordering Examples

40

Decimal: 12345
Binary: 0011 0000 0011 1001
Hex: 3 0 3 9

39
30
00
00

IA32, x86-64
(little-endian)

00
00
00
00

39
30
00
00

64-bit
x86-64

39
30
00
00

32-bit
IA32

30
39

00
00

SPARC
(big-endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

int x = 12345;
// or x = 0x3039;

long int y =
(long int) x;

(A long int is
the size of a word)

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

CSE 351, Summer 2019L02: Memory & Data I

Endianness

v Endianness only applies to memory storage
v Often programmer can ignore endianness because it

is handled for you
§ Bytes wired into correct place when reading or storing from

memory (hardware)

§ Compiler and assembler generate correct behavior (software)

v Endianness still shows up:
§ Logical issues: accessing different amount of data than how

you stored it (e.g. store int, access byte as a char)
§ Need to know exact values to debug memory errors
§ Manual translation to and from machine code (in 351)

42

CSE 351, Summer 2019L02: Memory & Data I

Summary

v Memory is a long, byte-addressed array
§ Word size bounds the size of the address space and memory
§ Different data types use different number of bytes
§ Address of chunk of memory given by address of lowest byte

in chunk
§ Object of 𝐾 bytes is aligned if it has an address that is a

multiple of 𝐾
v Pointers are data objects that hold addresses
v Endianness determines memory storage order for

multi-byte data

43

