
2 of 7  

1. Integers and Floats (7 points)

a. In the card game Schnapsen, 5 cards are used (Ace, Ten, King, Queen, and Jack) from 4 suits,
so 20 cards in total.  What are the minimum number of bits needed to represent a single card in
a Schnapsen deck?

b. How many negative numbers can we represent if given 7 bits and using two’s complement?

Consider the following pseudocode (we’ve written out the bits instead of listing hex digits):

int a = 0b0100 0000 0000 0000 0000 0011 1100 0000 
int b = (int)(float)a 
int m = 0b0100 0000 0000 0000 0000 0011 0000 0000 
int n = (int)(float)m 

c. Circle one: True  or False: 

a == b

d. Circle one: True  or False: 

m == n

e. How many IEEE single precision floating point numbers are in the range [4, 6) (That is, how
many floating point numbers are there where 4 <= x < 6?)

Sp17 Midterm Q1



SID: __________ 

3 
 

Question M3:  Pointers & Memory  [8 pts] 

For this problem we are using a 64-bit x86-64 machine (little endian).  Below is the count_nz 
function disassembly, showing where the code is stored in memory. 

 

(A) What are the values (in hex) stored in each register shown after the following x86 instructions are 
executed?  Use the appropriate bit widths.  Hint: what is the value stored in %rsi?  [4 pt] 

 Register Value (hex) 

 %rdi 0x 0000 0000 0040 0544 

 %rsi 0x FFFF FFFF FFFF FFFF 

leal 2(%rdi, %rsi), %eax %eax 0x 0040 0545 

movw (%rdi,%rsi,4), %bx %bx 0x 8348 

 
 
(B) Complete the C code below to fulfill the behaviors described in the inline comments using pointer 

arithmetic.  Let char* charP = 0x400544.  [4 pt] 

 
  

0000000000400536 <count_nz>: 

  400536:  85 f6           testl  %esi,%esi 

  400538:  7e 1b           jle    400555 <count_nz+0x1f> 

  40053a:  53              pushq  %rbx 

  40053b:  8b 1f           movl   (%rdi),%ebx 

  40053d:  83 ee 01        subl   $0x1,%esi 

  400540:  48 83 c7 04     addq   $0x4,%rdi 

  400544:  e8 ed ff ff ff  callq  400536 <count_nz> 

  400549:  85 db           testl  %ebx,%ebx 

  40054b:  0f 95 c2        setne  %dl 

  40054e:  0f b6 d2        movzbl %dl,%edx 

  400551:  01 d0           addl   %edx,%eax 

  400553:  eb 06           jmp    40055b <count_nz+0x25> 

  400555:  b8 00 00 00 00  movl   $0x0,%eax 

  40055a:  c3              retq 

  40055b:  5b              popq   %rbx 

  40055c:  c3              retq 

char v1 = *(charP + _____);                     // set v1 = 0xDB 

int* v2 = (int*)((____________*)charP - 2);     // set v2 = 0x400534 

Kevin Bi
Au17 Final M3



6 
 

Question 5:  Procedures & The Stack  [24 pts] 

The recursive function sum_r() calculates the sum of the elements of an int array and its 
x86-64 disassembly is shown below: 

 

 

(A) The addresses shown in the disassembly are all part of which section of memory?  [2 pt] 

Instructions/Code 

(B) Disassembly (as shown here) is different from assembly (as would be found in an assembly 
file).  Name two major differences:  [4 pt] 

Difference 1: 

Difference 2: 

int sum_r(int *ar, unsigned int len) { 
    if (!len) { 
        return 0; 
    else 
        return *ar + sum_r(ar+1,len-1); 
} 

0000000000400507 <sum_r>: 

  400507:  41 53           pushq  %r12 

  400509:  85 f6           testl  %esi,%esi 

  40050b:  75 07           jne    400514 <sum_r+0xd> 

  40050d:  b8 00 00 00 00  movl   $0x0,%eax 

  400512:  eb 12           jmp    400526 <sum_r+0x1f> 

  400514:  44 8b 1f        movl   (%rdi),%r12d 

  400517:  83 ee 01        subl   $0x1,%esi 

  40051a:  48 83 c7 04     addq   $0x4,%rdi 

  40051e:  e8 e4 ff ff ff  callq  400507 <sum_r> 

  400523:  44 01 d8        addl   %r12d,%eax 

  400526:  41 5b           popq   %r12 

  400528:  c3              retq 

Kevin Bi
Au18 Midterm Q5



SID: ____________ 

7 
 

(C) What is the return address to sum_r that gets stored on the stack?  Answer in hex.  [2 pt] 

0x 400523 

(D) What value is saved across each recursive call?  Answer using a C expression.  [2 pt] 

*ar 

(E) Assume main calls sum_r(ar,3) with int ar[] = {3,5,1}.  Fill in the snapshot of 
memory below the top of the stack in hex as this call to sum_r returns to main.  For 
unknown words, write “0x unknown”.  [6 pt] 

0x7fffffffde20 <ret addr to main> 
0x7fffffffde18 <original r12> 

0x7fffffffde10 0x 400523 

0x7fffffffde08 0x 3  

0x7fffffffde00 0x 400523  

0x7fffffffddf8 0x 5 

0x7fffffffddf0 0x 400523 

0x7fffffffdde8 0x 1 

(F) Assembly code sometimes uses relative addressing.  The last 4 bytes of the callq 
instruction encode an integer (in little endian).  This value represents the difference 
between which two addresses?  Hint: both addresses are important to this callq.  [4 pt] 

value (decimal):  

address 1: 0x 400507 

address 2: 0x 400523 

(G) What could we change in the assembly code of this function to reduce the amount of 
Stack memory used while keeping it recursive and functioning properly?  [4 pt] 

 



Name: NetID:

1. C and Assembly (15 points)

Consider the following (partially blank) x86-64 assembly, (partially blank) C code, and memory listing.
Addresses and values are 64-bit, and the machine is little-endian. All the values in memory are in hex, and
the address of each cell is the sum of the row and column headers: for example, address 0x1019 contains the
value 0x18.

Assembly code:

foo:
movl $0,

L1:
cmpq $0x0, %rdi
je L2
cmp , 0x1(%rdi)
je
mov 0x8(%rdi), %rdi
jmp

L2:
ret

L3:
mov (%rdi), %eax
jmp L2

C code:

typedef struct person {
char height;
char age;
struct person* next_person;

} person;

int foo(person* p) {
int answer = ;
while ( ) {

if (p->age == 24){
answer = p-> ;
break;

}
p = ;

}
return answer;

}

Memory Listing
Bits not shown are 0.

0x00 0x01 ... 0x05 0x06 0x07

0x1000 80 1B ... 00 00 00

0x1008 80 1B ... 00 00 00

0x1010 3F 18 ... 00 00 00

0x1018 3F 18 ... 00 00 00

0x1020 00 00 ... 00 00 00

0x1028 18 10 ... 00 00 00

0x1030 18 10 ... 00 00 00

0x1038 40 40 ... 00 00 00

0x1040 40 40 ... 00 00 00

0x1048 00 00 ... 00 00 00

(a) Given the code provided, fill in the blanks in the C and assembly code.

2 of 18

8J���'JOBM�2�



Name: NetID:

(b) Trace the execution of the call to
foo((person*) 0x1028) in the table
to the right. Show which instruc-
tion is executed in each step un-
til foo returns. In each space,
place the assembly instruction and
the values of the appropriate registers
after that instruction executes. You
may leave those spots blank when the
value does not change. You might not
need all steps listed on the table.

Instruction %rdi (hex) %eax (decimal)

movl 0x1028 0

cmpq

je

(c) Briefly describe the value that foo returns and how it is computed. Use only variable names from the
C version in your answer.

3 of 18



SID: __________ 

7 
 

Question F5:  Caching  [10 pts] 

We have 16 KiB of RAM and two options for our cache.  Both are two-way set associative with 256 B 
blocks, LRU replacement, and write-back policies.  Cache A is size 1 KiB and Cache B is size 2 KiB. 

(A) Calculate the TIO address breakdown for Cache B:  [1.5 pt] 

Tag bits Index bits Offset bits 

   

(B) The code snippet below accesses an integer array.  Calculate the Miss Rate for Cache A if it 
starts cold.  [3 pt] 

#define LEAP 4 

#define ARRAY_SIZE 512 

int nums[ARRAY_SIZE];           // &nums = 0x0100 (physical addr) 

for (i = 0; i < ARRAY_SIZE; i+=LEAP) 

    nums[i] = i*i; 

 

 

 

 

(C) For each of the proposed (independent) changes, write MM for “higher miss rate”, NC for “no 
change”, or MH for “higher hit rate” to indicate the effect on Cache A for the code above:[3.5 pt] 

Direct-mapped _____  Increase block size _____ 

Double LEAP _____  Write-through policy _____ 

 

 

(D) Assume it takes 200 ns to get a block of data from main memory.  Assume Cache A has a hit 
time of 4 ns and a miss rate of 4% while Cache B, being larger, has a hit time of 6 ns.  What is 
the worst miss rate Cache B can have in order to perform as well as Cache A?  [2 pt] 

 

 

  

Kevin Bi
Au16 Final F5



8 
 

Question F7:  Processes  [9 pts] 

(A) The following function prints out four numbers.  In the following blanks, list three possible 
outcomes:  [3 pt] 

(1)  _________________ 

(2)  _________________ 

(3)  _________________ 
 
 
 
 
 
 
 

(B) For the following examples of exception causes, write “N” for intentional or “U” for unintentional 
from the perspective of the user process.  [2 pt] 

System call ______ Hardware failure  ______ 

Segmentation fault ______ Mouse clicked ______ 

(C) Briefly define a zombie process.  Name a process that can reap a zombie process. [2 pt] 

Zombie process: 

Reaping process: 

(D) In the following blanks, write “Y” for yes or “N” for no if the following need to be updated when 
execv is run on a process.  [2 pt] 

Page table ______ PTBR ______ Stack ______ Code ______ 

 

 

  

void concurrent(void) { 
   int x = 3, status; 
   if (fork()) { 
      if (fork() == 0) { 
         x += 2; 
         printf("%d",x); 
      } else { 
         wait(&status); 
         wait(&status); 
         x -= 2; 
      }       
   } 
   printf("%d",x); 
   exit(0); 
} 

Kevin Bi
Au17 Final F7



4 of 9  

3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows: 

x 256 MiB Physical Address Space
x 4 GiB Virtual Address Space
x 1 KiB page size
x A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2. 

a) How many bits will be used for:

 Page offset? ___________ 

Virtual Page Number (VPN)? _________ Physical Page Number (PPN)? _________ 

TLB index?   __________________ TLB tag? __________________ 

b) How many entries in this page table?

c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore
instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8 
int cool[512]; 
... // Some code that assigns values into the array cool 
... // Now flush the TLB. Start counting TLB miss rate from here. 
int sum; 
for (int i = 0; i < 512; i += LEAP) { 
  sum += cool[i]; 
} 

TLB Miss Rate: (fine to leave you answer as a fraction) ______________ 

Sp17 Final Q3



SID: __________ 

9 

Question F7:  Virtual Memory  [10 pts] 

Our system has the following setup: 
x 24-bit virtual addresses and 512 KiB of RAM with 4 KiB pages
x A 4-entry TLB that is fully associative with LRU replacement
x A page table entry contains a valid bit and protection bits for read (R), write (W), execute (X)

(A) Compute the following values:  [2 pt]

Page offset width _______  PPN width _______ 

Entries in a page table _______  TLBT width _______ 

(B) Briefly explain why we make the page size so much larger than a cache block size.  [2 pt]

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the
following get updated during a page fault.  [2 pt]

Page table ______  Swap space ______ TLB ______ Cache ______

(D) The TLB is in the state shown when the following code is executed.  Which iteration (value of i)
will cause the protection fault (segfault)?  Assume sum is stored in a register.
Recall: the hex representations for TLBT/PPN are padded as necessary.  [4 pt]

long *p = 0x7F0000, sum = 0; 
for (int i = 0; 1; i++) { 
   if (i%2) 

*p = 0;
   else 

sum += *p; 
   p++; 
} 

i = 

TLBT  PPN  Valid  R  W  X 
0x7F0 0x31 1 1 1 0 
0x7F2 0x15 1 1 0 0 
0x004 0x1D 1 1 0 1 
0x7F1 0x2D 1 1 0 0 

Au16 Final Q7



10 

Question F8:  Memory Allocation  [9 pts] 

(A) Briefly describe one drawback and one benefit to using an implicit free list over an explicit free
list.  [4 pt]

Implicit drawback: Implicit benefit: 

(B) The table shown to the right shows the value of the header for the
block returned by the request:  (int*)malloc(N*sizeof(int))
What is the alignment size for this dynamic memory allocator? [2 pt]

(C) Consider the C code shown here.  Assume that
the malloc call succeeds and foo is stored in
memory (not just in a register).  Fill in the
following blanks with “>” or “<”  to compare
the values returned by the following expressions
just before return 0.  [3 pt]

ZERO ______  &ZERO

foo ______  &foo

foo ______  &str

N header value 
6 33
8 49
10 49
12 65

#include <stdlib.h> 
int ZERO = 0; 
char* str = "cse351"; 

int main(int argc, char *argv[]) { 
    int *foo = malloc(8); 
    free(foo); 
    return 0; 
} 

Au16 Final Q8



Name:

10. C vs. Java (11 points) Consider this Java code (left) and somewhat similar C code (right) running
on x86-64:

public class Foo {
private int[] x;
private int y;
private int z;
private Bar b;
public Foo() {

x = null;
b = null;

}
}

struct Foo {
int x[6];
int y;
int z;
struct Bar * b;

};

struct Foo * make_foo() {
struct Foo * f = (struct Foo *)malloc(sizeof(struct Foo));
f->x = NULL;
f->b = NULL;
return f;

}

(a) In Java, new Foo() allocates a new object on the heap. How many bytes would you expect this
object to contain for holding Foo’s fields? (Do not include space for any header information,
vtable pointers, or allocator data.)

(b) In C, malloc(sizeof(struct Foo)) allocates a new object on the heap. How many bytes would
you expect this object to contain for holding struct Foo’s fields? (Do not include space for any
header information or allocator data.)

(c) The function make_foo attempts to be a C variant of the Foo constructor in Java. One line fails
to compile. Which one and why?

(d) What, if anything, do we know about the values of the y and z fields after Java creates an instance
of Foo?

(e) What, if anything, do we know about the values of the y and z fields in the object returned by
make_foo?

8J���'JOBM�2��



10 

Question F9:  Memory Allocation  [9 pts] 

(A) In a free list, what is a footer used for?  Be specific.  Why did we not need to use one in

allocated blocks in Lab 5?  [2 pt]

Footer: 

Lab 5: 

(B) We are designing a dynamic memory allocator for a 64-bit computer with 4-byte boundary

tags and alignment size of 4 bytes.  Assume a footer is always used.  Answer the following

questions:  [4 pt]

Maximum tags we can fit into the header (ignoring size): ______ tags 

Minimum block size if we implement an explicit free list: ______ bytes

Maximum block size (leave as expression in powers of 2): __________ bytes

(C) Consider the C code shown here.  Assume that

the malloc call succeeds and foo is stored in

memory (not just in a register).  Fill in the

following blanks with “>” or “<”  to compare

the values returned by the following expressions

just before return 0.  [3 pt]

&foo ______  &ZERO

&str ______  ZERO

&main ______  str

#include <stdlib.h> 
int ZERO = 0; 
char* str = "cse351"; 

int main(int argc, char *argv[]) { 
    int *foo = malloc(8); 
    free(foo); 
    return 0; 
} 

Au17�'JOBM�29




