
CSE	351	Section	8	–	More	Caches,	Processes	&	Concurrency	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	J	

Practice	Cache	Exam	Problem	(11	pts)	
We	have	a	64	KiB	address	space	and	two	different	caches.		Both	are	1	KiB,	direct-mapped	caches	with	random	
replacement	and	write-back	policies.		Cache	X	uses	64	B	blocks	and	Cache	Y	uses	256	B	blocks.	
	
a) Calculate	the	TIO	address	breakdown	for	Cache	X:	

Tag	 Index	 Offset	

16 − 4 − 6 = 𝟔	
[\]

[^
= 2_	à	4	 2` = 64	à	6	

	
b) During	some	part	of	a	running	program,	Cache	Y’s	management	bits	are	as	shown	below.		Four	options	for	the	

next	two	memory	accesses	are	given	(R	=	read,	W	=	write).		Circle	the	option	that	results	in	data	from	the	
cache	being	written	to	memory.	

Line	 Valid	 Dirty	 Tag	
00	 0	 0	 1000	01	
01	 1	 1	 0101	01	
10	 1	 0	 1110	00	
11	 0	 0	 0000	11	

	
Note	that,	since	the	last	8	bits	form	the	offset,	we	can	ignore	the	last	two	hex	digits	for	this	problem.	
	

	(1)	R 0x4C00, W 0x5C00	 (2)	W 0x5500, W 0x7A00 

 

	

	

	

(3)	W 0x2300, R 0x0F00	 (4)	R 0x3000, R 0x3000 

	
	
	
	
	
	
	
c) The	code	snippet	below	loops	through	a	character	array.		Give	the	value	of	LEAP	that	results	in	a	Hit	Rate	of	

15/16	for	Cache	Y.	

#define ARRAY_SIZE 8192 
char string[ARRAY_SIZE];   // &string = 0x8000 
for(i = 0; i < ARRAY_SIZE; i += LEAP) { 
 string[i] |= 0x20;   // to lower 
} 

32	

	

Cache	Y:	
- Tag:	6	bits	
- Index:	[

\]

[k
= 2[	à	2	bits	

- Offset:	256 = 2l	à	8	bits	

2m` = 64	KiB,	so	we	
have	16	bit	addresses.	

																				R	0b0100	1100…	,	W	0b0101	1100…	
The	read	evicts	line	0,	but	the	dirty	bit	was	not	set	so	
nothing	is	written	(also,	line	0	was	initially	invalid).	
The	write	overwrites	line	0	again	but	since	the	cache	
is	write-back	nothing	is	written	to	memory.	
	

																				W	0b01010101…	,	W	0b0111	1010…	
The	first	write	doesn’t	evict	anything	because	the	
tags	match.	The	second	write	evicts	the	old	data	but	
the	dirty	bit	was	not	set	so	the	old	data	doesn’t	need	
to	be	written	back	to	memory.	
	

																				W	0b0010	0011…	,	R	0000	1111…	
The	write	evicts	line	3	which	was	invalid	and	also	
not	dirty,	so	nothing	is	written.	The	read,	however,	
also	maps	to	line	3	so	it	must	write	the	value	
changed	in	the	write	back	to	memory	before	it	can	
update	the	cache.		
	

																				R	0b0011	0000…	,	R	0011	0000…	
Line	3	is	initially	not	dirty	(and	invalid)	so	nothing	is	
written	back	to	memory	from	either	of	these	reads	
(which	both	read	from	the	same	line).	

Note	that	|=	is	a	read	and	a	write	(i.e.,	two	accesses).	To	obtain	a	15/16	hit	rate,	
we	want	to	perform	[o`

m`
= 16	accesses	per	block	(the	first	access	will	be	a	miss,	

subsequent	accesses	will	be	hits).	However,	since	each	loop	iteration	performs	
two	accesses,	we	want	to	loop	8	times	per	block.	Therefore	𝐿𝐸𝐴𝑃 = [o`

l
= 32.	



d) For	the	loop	shown	in	part	(c),	let	LEAP	=	64.		Circle	ONE	of	the	following	changes	that	increases	the	hit	rate	of	
Cache	X:	

Increase	Block	Size	 Increase	Cache	Size	 Add	a	L2$	 Increase	LEAP	

	

	

	 	 	 	

e) For	the	following	cache	access	parameters,	calculate	the	AMAT.		Please	simplify	and	include	units.	

L1$	Hit	Time	 L1$	Miss	Rate	 MEM	Hit	Time	
2	ns	 40%	 400	ns	

	
162	ns	

	

Benedict	Cumbercache:	
Given	the	following	sequence	of	access	results	(addresses	are	given	in	decimal)	on	a	cold/empty	cache	of	size	16	
bytes,	what	can	we	deduce	about	its	properties?		Assume	an	LRU	replacement	policy.	
	

        (0, Miss),	(8, Miss),	(0, Hit),	(16, Miss),	(8, Miss) 

1) What	can	we	say	about	the	block	size?	
	
The	block	size	must	be	≤ 8	because	access	(2)	to	address	8	is	a	miss	after	access	(1)	to	address	0	is	a	hit.	

	

2) What	is	this	cache’s	associativity?	
	
Associativity	𝐸 ≤ 2	because	access	(4)	caused	address	8	from	access	(2)	to	be	evicted.	If	it	were	> 2,	then	
we	would	be	able	to	fit	addresses	0,	8,	and	16	all	at	once	even	if	they	mapped	to	the	same	set.	
	
Now,	consider	the	case	where	𝐸 = 1.	Then	there	are	four	possibilities	for	block	size	K	and	number	of	sets	S:	
	

Block	Size	(K)	 Offset	Bits	(k)	 Number	of	Sets	(S)	 Set	Bits	(s)	 𝑠 + 𝑘	
1	 0	 16	 4	 4	
2	 1	 8	 3	 4	
4	 2	 4	 2	 4	
8	 3	 2	 1	 4	

Note	that	in	each	of	these	cases,	𝑠 + 𝑘 = 4,	so	the	4th	bit	from	the	right	(i.e.	the	4th	least	significant	bit)	will	
always	be	a	set	bit.	The	address	8	(0b01000)	and	16	(0b10000)	differ	on	the	4th	bit	from	the	right,	so	in	any	
direct-mapped	cache,	they	cannot	map	to	the	same	set!	However,	access	(4)	to	address	16	evicted	access	(2)	
to	address	8	in	our	example	(since	access	(3)	was	a	hit,	it	didn’t	evict	anything).	This	means	that	it	is	
impossible	for	the	cache	to	be	direct	mapped,	so	it	must	be	2-way	set	associative.	

	

	

• Larger	block	size	mean	that	we	can	fit	more	bytes	in	a	block,	so	more	information	will	be	pulled	in	on	
each	miss.	Therefore,	hit	rate	will	increase.	

• Increasing	cache	size	will	not	change	hit	rate	since	we	are	accessing	data	contiguously.	
• Adding	a	L2	cache	will	not	change	the	hit	rate	(it	will	just	decrease	the	miss	penalty).	
• Increasing	LEAP	will	increase	the	miss	rate	since	data	accessed	will	be	further	apart	in	memory.	

AMAT	=	(hit	time)	+	(miss	rate)(miss	time)	
You	always	pay	for	hit	time.	You	also	pay	for	miss	time	during	a	cache	miss.	
	

2 + (0.4)(400) = 162	ns	

(1)	 (2)	 (3)	 (4)	 (5)	



3) How	many	sets	could	this	cache	have?	
To	find	set	size,	we	need	to	know	block	size.	We	know	that	the	cache	is	2-way	set	associative	and	has	a	total	
size	𝐶 = 16B.	Since	16 = 2 ∗ 𝑆 ∗ 𝐾,	and	we	know	from	question	1	that	𝐾 ∈ {1, 2, 4, 8},	we	know	that	𝑆 ∈
{1, 2, 4, 8}.	So	we	might	have:		

	
Block	Size	(K)	 Offset	Bits	(k)	 Number	of	Sets	(S)	 Set	Bits	(s)	 𝑠 + 𝑘	
1	 0	 8	 3	 3	
2	 1	 4	 2	 3	
4	 2	 2	 1	 3	
8	 3	 1	 0	 3	

Note	that,	in	any	case,	𝑠 + 𝑘 = 3,	i.e.,	we	have	3	bits	for	the	set	and	offset.	The	last	three	bits	of	every	
address	in	our	access	pattern	are	the	same,	so	they	will	all	map	to	the	same	set	regardless	of	which	
configuration	we	have.	This	means	that	any	one	of	these	configurations	is	equally	possible,	so	all	we	can	say	
is	that	𝑆 ∈ {1𝐵, 2𝐵, 4𝐵, 8𝐵}.	

	

4) How	many	bits	will	the	tag	use	given	an	𝑛-bit	address?	

We	determined	in	the	previous	problem	that	the	set	and	offset	bits	will	always	take	up	3	bits	together,	
regardless	of	the	number	of	sets.	So,	with	𝑛-bit	addresses,	we	will	have	𝑛 − 3	bit	sized	tags.	

	

Fork	and	Concurrency:	
Consider	this	code	using	Linux’s	fork:	

    int x = 7; 
    if( fork() ) { 
        x++; 
        printf(" %d ", x);	 
        fork(); 
        x++; 
        printf(" %d ", x); 
    } else { 
        printf(" %d ", x); 
    } 

What	are	all	the	different	possible	outputs	(i.e.	order	of	things	printed)	for	this	code?	
(Hint:		there	are	four	of	them.)	

fork()	returns	0	to	the	child,	and	the	child’s	process	ID	(PID)	to	the	parent.	Notice	that	first	call	to	fork()	is	the	
only	time	it	is	called	conditionally.	So	the	time	at	which	child	1	prints	“7”	is	unknown.	However,	the	parent	will	
print	“8”	before	the	second	call	to	fork(),	meaning	that	the	“8”	is	printed	before	the	“9”s,	then	the	parent	and	
child	2	will	both	print	out	“9”.	(The	ordering	of	the	9s	may	change,	but	that	doesn’t	matter	because	they	are	both	9).		
	
Possible	orderings:	

• 7	8	9	9	
• 8	7	9	9	
• 8	9	7	9	
• 8	9	9	7	

parent	

child	1	

child	2	


