
CSE	351	Section	6	–	Arrays	and	Structs	
Welcome	back	to	section,	we’re	happy	that	you’re	here	J	

Arrays	
• Arrays	are	contiguously	allocated	chunks	of	memory	large	enough	to	hold	the	specified	number	of	

elements	of	the	size	of	the	datatype.		Separate	array	allocations	are	not	guaranteed	to	be	contiguous.	

• 2-dimensional	arrays	are	allocated	in	row-major	ordering	in	C	(i.e.	the	first	row	is	contiguous	at	the	start	of	
the	array,	followed	by	the	second	row,	etc.).			

• 2-level	arrays	are	formed	by	creating	an	array	of	pointers	to	other	arrays	(i.e.	the	second	level).	

Structs	
• Structs	are	contiguously	allocated	chunks	of	memory	that	hold	a	programmer-defined	collection	of	

potentially	disparate	variables.	

• Individual	fields	appear	in	the	struct	in	the	order	that	they	are	declared	

• Each	field	follows	its	variable	alignment	requirement,	with	internal	fragmentation	added	between	fields	as	
necessary.	

• The	overall	struct	is	aligned	according	to	the	largest	field	alignment	requirement,	with	external	
fragmentation	added	at	the	end	as	necessary.	

	

Let’s	do	a	comparison	of	different	data	structure	representations	in	C!	

We’ll	see	later	in	the	course	how	the	following	questions	become	important	for	program	performance	(execution	
time)	in	terms	of	memory	usage,	speed	of	memory	allocation,	and	speed	of	data	access.	

< questions on reverse side >

We	have	a	two-dimensional	matrix	of	integer	data	of	size	𝑀	rows	and	𝑁	columns.		We	are	considering	3	different	
representation	schemes:	

1) 2-dimensional	array		int array2D[][],	 	 	 //	M*N	array	of	ints		
2) 2-level	array		int* array2L[],	and		 	 	 //	M	array	of	int	arrays	
3) array	of	linked	lists		struct node* arrayLL[].	 	 //	M	array	of	linked	lists	(struct	node)	

Consider	the	case	where	𝑀 = 3	and	𝑁 = 4.		The	declarations	are	given	below:	
2-dimensional array: 2-level array: Array of linked lists:
int array2D[3][4]; int r0[4], r1[4], r2[4];

int* array2L[] = {r0,r1,r2};
struct node {
 int col, num;
 struct node* next;
};
struct node* arrayLL[3];
// code to build out LLs

For	example,	the	diagrams	below	correspond	to	the	matrix	
0 0
−4 0
0 0

1 0
5 0
0 0

	for	array2L	and	arrayLL:	

	

a) Fill	in	the	following	comparison	chart:	
	 2-dim	array	 2-level	array	 Array	of	LLs:	
Overall	Memory	Used	 	 	 	

Largest	guaranteed	
continuous	chunk	of	
memory	

	 	 	

Smallest	guaranteed	
continuous	chunk	of	
memory	

	 	 	

Data	type	returned	by:	 array2D[1]

array2L[1]

arrayLL[1]

Number	of	memory	accesses	
to	get	int	in	the	BEST	case	

Number	of	memory	accesses	
to	get	int	in	the	WORST	
case	

	
b) Sam	Student	claims	that	since	our	arrays	are	relatively	small	(𝑁 < 256),	we	can	save	space	by	storing	the	col	

field	as	a	char	in	struct node.		Is	this	correct?		If	so,	how	much	space	do	we	save?		If	not,	is	this	an	example	
of	internal	or	external	fragmentation?	

	
	

