
2

Question 1: Number Representation [12 pts]

(A) What is the value of the char 0b 1101 1101 in decimal? [1 pt]

If x = 0xDD, –x = 0x23 = 25+3 = 35
Also accepted unsigned: 0xDD = (16+1)*13 = 221

-35 or 221

(B) What is the value of char z = (0xB << 7) in decimal? [1 pt]

0xB << 7 = 0b 1000 0000 = TMinchar = -128
Also accepted unsigned: 0x80 = 128

-128 or 128

(C) Let char x = 0xC0. Give one value (in hex) for char y that results in both signed and

unsigned overflow for x+y. [2 pt]

x<0, so need large enough (in magnitude) neg num for signed
overflow. Unsigned overflow comes naturally along with this.

0x80 ൑ y ൑ 0xBF

For the rest of this problem we are working with a floating point representation that follows the

same conventions as IEEE 754 except using 8 bits split into the following vector widths:

Sign (1) Exponent (4) Mantissa (3)

(D) What is the magnitude of the bias of this new representation? [2 pt]

Bias = 2ସିଵ െ 1 ൌ 7 7

(E) Translate the floating point number 0b 1100 1110 into decimal. [3 pt]

-7

S = 1, E = 10012, M = 1102. Notice that E indicates this is not a special case.

Exp = 9 – 7 = 2, Man = 1.1102.
ሺെ1ሻଵ ൈ 1.110ଶ ൈ 2ଶ ൌ െ111ଶ ൌ െ7.

(F) What is the smallest positive integer that can’t be represented in this floating point

encoding scheme? Hint: For what integer will the “one’s digit” get rounded off? [3 pt]

17

Look for number such that the 20=1 bit is just off the end of the mantissa.

So of the form 1.0001ൈ 2୉୶୮, with the underlined bit being 2଴.

Counting to the left, we find that Exp = 4, and 1.0001 ൈ 2ସ ൌ 17.

Au16 Midterm Q1

Name: 1 NUMBER REPRESENTATION(10 POINTS)

1 Number Representation(10 points)

Let x=0xE and y=0x7 be integers stored on a machine with a word size of 4bits. Show your work with the
following math operations. The answers—including truncation—should match those given by our
hypothetical machine with 4-bit registers.

A. (2pt) What hex value is the result of adding these two numbers?

In hex: 0xE + 0x7 = 0x15 → 0x5
In binary converted back to hex: 0xE + 0x7 = 1110 + 0111 = 10101 → 0101 = 0x5
Half credit for not truncating to the appropriate value.

B. (2pt) Interpreting these numbers as unsigned ints, what is the decimal result of adding x + y?

In unsigned decimal: 0xE + 0x7 = 14 + 7 = 21 % 16 = 5
Half credit for not truncating to the appropriate value or incorrect conversion.
No credit for computing in signed decimal

C. (2pt) Interpreting x and y as two’s complement integers, what is the decimal result of computing x−y?

In signed decimal: 0xE - 0x7 =¿ -2 - 7 = -9 → 7
Half credit for not truncating to the appropriate value, or incorrect conversion.
No credit for computing in unsigned decimal

D. (2pt) In one word, what is the phenomenon happening in 1B?

Overflow.

E. (2pt) Circle all statements below that are TRUE on a 32-bit architecture:
Half point each.

• It is possible to lose precision when converting from an int to a float. True

• It is possible to lose precision when converting from a float to an int. True

• It is possible to lose precision when converting from an int into a double. False

• It is possible to lose precision when converting from a double into an int. True

2 of 10

Sp15 Midterm Q1

UW NetID: _ _ _ _ _ _ _

3

Question 2: Pointers & Memory [14 pts.]
For this problem, assume we are executing on a 64-bit x86-64 machine (little endian). The current state

of memory (values in hex) is shown below.

int *x = 0x00;
long *y = 0x10;
unsigned short *z = 0x18;

Memory

Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00 ac ab dc ff 0a a8 11 fa

0x08 de ad ac ae 32 5a 42 ff

0x10 de ad be ef 10 ab cd 00

0x18 bb ff ee cc 00 11 22 33

0x20 01 00 02 00 08 00 0f 00

0x28 11 11 00 10 01 11 22 17

(A) Fill in the type and value (in hex) for each of the following C expressions. Remember to use the

appropriate bit widths. [8 pts.]

Expression (in C) Type Value (in hex)

z unsigned short * 0x 0000 0000 0000 0018

*x int 0x ffdc abac

x+3 int * 0x 0000 0000 0000 000c

*(y-1) long 0x ff42 5a32 aeac adde

z[3] unsigned short 0x 3322

(B) What are the values (in hex) stored in each register shown after the following x86-64 instructions are

executed? We are still using the state of memory shown above in part a. Remember to use the

appropriate bit widths. [6 pts.]

Register Value (in hex)

%rax 0x 0000 0000 0000 0008

%rsi 0x 0000 0000 0000 0018

movb (%rsi), %cl %cl 0x bb

leaq 16(%rsi, %rsi, 4), %rcx %rcx 0x 0000 0000 0000 0088

movswl -10(%rsi, %rax, 4), $r8d %r8d 0x 0000 1722

Wi18 Midterm Q2

5 of 7

4. Pointers, Memory & Registers (14 points)

Assuming a 64-bit x86-64 machine (little endian), you are given the following variables and

initial state of memory (values in hex) shown below:

Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 AB EE 1E AC D5 8E 10 E7

0x08 F7 84 32 2D A5 F2 3A CA

0x10 83 14 53 B9 70 03 F4 31

0x18 01 20 FE 34 46 E4 FC 52

0x20 4C A8 B5 C3 D0 ED 53 17

int* ip = 0x00;

short* sp = 0x20;

long* yp = 0x10;

a) Fill in the type and value for each of the following C expressions. If a value cannot be

determined from the given information answer UNKNOWN.

Expression (in C) Type Value (in hex)

yp + 2 long* 0x20

*(sp – 1) short 0x52FC

ip[5] int 0x31F40370

&ip int** UNKNOWN

b) Assuming that all registers start with the value 0, except %rax which is set to 0x4, fill in the

values (in hex) stored in each register after the following x86 instructions are executed.

Remember to give enough hex digits to fill up the width of the register name listed.

Register Value (in hex)

%rax 0x0000 0000 0000 0004

movl 2(%rax), %ebx %ebx 0x84f7 e710

leal (%rax,%rax,2), %ecx %ecx 0x0000 000c

movsbl 4(%rax), %edi %rdi 0x0000 0000 ffff fff7

subw (,%rax,2), %si %si 0x7B09

Sp17 Midterm Q4

SID: __________

4

Question 3: Design Questions [6 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

Many different answers were accepted for these questions, including some not listed here.

(A) We have repeatedly stated that Intel is big on legacy and backwards-compatibility. Name

one example of this that we have seen in this class. [2 pt]

 Naming of first 8 registers (%rax, etc.) comes from IA32.

 Any 32-bit result stored in a register will zero-out the upper 32-bits (so IA32
programs run correctly on 64-bit machines).

 The “word” instruction suffix in x86-64 (e.g. movw) still refers to 16 bits.

 Use of CISC design philosophy: keeps old instructions in newer instruction sets.

(B) Name one programming consequence if we decided to assign an address to every 4 bytes of

memory (instead of 1 byte). [2 pt]

 For the same word size, your address space will be 4 times larger now.

 For same address space, addresses could be 2 bits shorter now.

 Difficult to access data for small datatypes in memory (alternatively, much more
padding needed when storing small datatypes).

 Might not be able to use b and w assembly instruction suffixes when accessing
memory.

(C) If we changed the x86-64 architecture to use 24 registers, how might we adjust the register

conventions? [2 pt]

One thing that should remain the same:
 Only need 1 stack pointer and 1 return value.
 Still have both callee-saved and caller-saved registers.
 Keep the names of the existing 16 registers.
One thing that should change:
 Probably increase the number of argument registers.
 Anything related to defining which of the new registers are callee-saved or caller-

saved was given credit.

Au17 Midterm Q3

Name:

6. (7 points) (Instruction-Set Architecture Design) Suppose we decide to change x86-64 to have 100
registers instead of 16. Give one-word answers to the following questions.

(a) Would this change make it harder or easier to implement hardware that executes instructions as
quickly?

(b) Would this change make it harder or easier for software to use less stack space?

(c) Would you expect a revised calling convention to have more caller-save registers or fewer caller-
save registers?

(d) Would you expect a revised calling convention to have more callee-save registers or fewer callee-
save registers?

(e) Would it be possible to make this change in a way that existing x86-64 executables could still run
without modifying them (yes or no)?

Solution:

(a) harder

(b) easier

(c) more

(d) more

(e) yes

Sp18 Midterm Q6

justi
Rectangle

SID: __________

5

Question 4: C & Assembly [24 pts]

Answer the questions below about the following x86-64 assembly function:

(A) What variable type would %rdi be in the corresponding C program? [4 pt]

%rcx is calculated from %rdi with scale 2 (Line 5) and then __short*__ rdi

dereferenced with a movzwl instruction (Line 6).

(B) Briefly describe why Line 4 is needed before Line 5. [4 pt]

Memory operands (Line 5) must take 64-bit register names, since addresses are 8 bytes
wide. So the 4-byte value in %eax, must be extended to 8 bytes beforehand.

(C) This function uses a for loop. Fill in the corresponding parts below, using register names

as variable names. None should be blank. [8 pt]

for (__eax = 0___ ; __eax < esi__ ; __eax++__)

Init is from Line 1, Test is from Lines 2-3, Update is from Line 9.

(D) If we call this function with the value 3 as the second argument, what value is

returned? [4 pt]

Return value is %rax and we exit the loop when %eax = %esi. 3

(E) Describe at a high level what you think this function accomplishes (not line-by-line). [4 pt]

Overrides an array of shorts with the parity of the entries (1 for odd, 0 for even –
given by the least significant bit).

mystery:

movl $0, %eax # Line 1

.L2: cmpl %esi, %eax # Line 2

jge .L1 # Line 3

movslq %eax, %rdx # Line 4

leaq (%rdi,%rdx,2), %rcx # Line 5

movzwl (%rcx), %edx # Line 6

andl $1, %edx # Line 7

movw %dx, (%rcx) # Line 8

addl $1, %eax # Line 9

jmp .L2 # Line 10

.L1: retq # Line 11

Su18 Midterm Q4

UW NetID: _ _ _ _ _ _ _

4

Question 3: C Programming & x86-64 Assembly [20 pts.]
Consider the following x86-64 assembly and (mostly blank) C code. The C code is in a file called foo.c

and contains a main function and a mystery function, foo. The function foo takes one input and returns

a single value. Fill in the missing C code that is equivalent to the x86-64 assembly for the function foo.

You can use the names of registers (without the %) for C variables. [18 pts.]

Hint: the function foo contains a for loop. There are more blank lines in the C Code than should be

required for your solution.

x86-64 Assembly: function foo C Code: file foo.c

 .text

 .globl foo

 .type foo, @function

foo:

 jmp .L2

.L4:

 testb $1, %dil

 je .L3

 movslq %edi, %rdx

 addq %rdx, %rax

.L3:

 subl $3, %edi

.L2:

 testl %edi, %edi

 jg .L4

 ret

#include <stdio.h> // for printf

long foo(int x) {

 long sum;

 for (int i = x; i > 0; i = i-3) {

 if (i & 0x1) {

 sum += i;

 }

 }

 return sum;

}

Note: variable names may be
different in students’ answers
(e.g., use rax instead of sum).

int main(int argc, char **argv) {

 long r = foo(10);

 printf(“r: %ld\n”, r);

 return 0;

}

Follow up: Assume the code in main is correct and has no errors. However, the provided x86-64 code for

function foo has a single correctness error. What is the error, and when might this error cause a problem

with the execution of foo? Answer in one or two short English sentences. [2 pts.]

The variable “sum” (or the variable we return from foo) is never initialized. Thus, it will hold a

random value prior to the loop, and the execution of foo will always be incorrect (unless the

variable happens to have the value 0 prior to loop execution).

Wi18 Midterm Q3

6

Question 5: Procedures & The Stack [20 pts]

The recursive power function power() calculates base^pow and its x86-64 disassembly is

shown below:

(A) How much space (in bytes) does this function take up in our final executable? [2 pt]

Count all bytes (middle columns) or subtract address of next
instruction (0x4005bc) from 0x4005a0. 28 B

(B) Circle one: The label power will show up in which table(s) in the object file? [4 pt]

Symbol Table Relocation Table Both Tables Neither Table

power is called in this file (recursively) and can be called by external files, so in both.

(C) Which register is being saved on the stack? [2 pt]

See pushq instruction (0x4005a4). %rbx

int power(int base, unsigned int pow) {
 if (pow) {
 return base * power(base,pow-1);
 }
 return 1;
}

00000000004005a0 <power>:

 4005a0: 85 f6 testl %esi,%esi

 4005a2: 74 10 je 4005b4 <power+0x14>

 4005a4: 53 pushq %rbx

 4005a5: 89 fb movl %edi,%ebx

 4005a7: 83 ee 01 subl $0x1,%esi

 4005aa: e8 f1 ff ff ff call 4005a0 <power>

 4005af: 0f af c3 imull %ebx,%eax

 4005b2: eb 06 jmp 4005ba <power+0x1a>

 4005b4: b8 01 00 00 00 movl $0x1,%eax

 4005b9: c3 ret

 4005ba: 5b popq %rbx

 4005bb: c3 ret

Su18 Midterm Q5

Parts (A)
and (B)
Not for
19sp
midterm

SID: __________

7

(D) What is the return address to power that gets stored on the stack? Answer in hex. [2 pt]

The address of the instruction after call. 0x4005af

(E) Assume main calls power(8,3). Fill in the snapshot of memory below the top of the

stack in hex as this call to power returns to main. For unknown words, write

“unknown”. [6 pt]

0x7fffeca3f748 <ret addr to main>

power(8,3)
0x7fffeca3f740 <original rbx>

0x7fffeca3f738 0x4005af <ret addr>
power(8,2)

0x7fffeca3f730 0x8 <base>

0x7fffeca3f728 0x4005af <ret addr>
power(8,1)

0x7fffeca3f720 0x8 <base>

0x7fffeca3f718 0x4005af <ret addr> power(8,0)

0x7fffeca3f710 unknown

The base case doesn’t push %rbx onto the stack, so 0x7fffeca3f710 remains

unknown.

(F) Harry the Husky claims that we could have gotten away with not pushing a register onto

the stack in power. Is our intrepid school’s mascot correct or not? Briefly explain. [4 pt]

Harry is correct! base doesn’t change between recursive calls and power
doesn’t call other procedures, so there is no need to save %rdi in %rbx.

In fact, if you compile the C function with an optimization flag of -O2, it doesn’t push
%rbx onto the stack!

6 of 7

5. Stack Discipline (15 points)

Examine the following recursive function:

long sunny(long a, long *b) {

 long temp;

 if (a < 1) {

return *b - 8;

 } else {

temp = a - 1;

return temp + sunny(temp - 2, &temp);

 }

}

Here is the x86_64 assembly for the same function:

0000000000400536 <sunny>:

 400536: test %rdi,%rdi

 400539: jg 400543 <sunny+0xd>

 40053b: mov (%rsi),%rax

 40053e: sub $0x8,%rax

 400542: retq

 400543: push %rbx

 400544: sub $0x10,%rsp

 400548: lea -0x1(%rdi),%rbx

 40054c: mov %rbx,0x8(%rsp)

 400551: sub $0x3,%rdi

 400555: lea 0x8(%rsp),%rsi

 40055a: callq 400536 <sunny>

 40055f: add %rbx,%rax

 400562: add $0x10,%rsp

 400566: pop %rbx

 400567: retq

We call sunny from main(), with registers %rsi = 0x7ff…ffad8 and %rdi = 6. The value

stored at address 0x7ff…ffad8 is the long value 32 (0x20). We set a breakpoint at “return

*b - 8” (i.e. we are just about to return from sunny() without making another recursive call).

We have executed the sub instruction at 40053e but have not yet executed the retq.

Fill in the register values on the next page and draw what the stack will look like when the

program hits that breakpoint. Give both a description of the item stored at that location and the

value stored at that location. If a location on the stack is not used, write “unused” in the

Description for that address and put “-----” for its Value. You may list the Values in hex or

decimal. Unless preceded by 0x we will assume decimal. It is fine to use f…f for sequences of

f’s as shown above for %rsi. Add more rows to the table as needed. Also, fill in the box on the

next page to include the value this call to sunny will finally return to main.

Breakpoint

Sp17 Midterm Q5

 7 of 7

Register Original Value Value at Breakpoint

rsp 0x7ff…ffad0 0x7ff…ffa90

rdi 6 0

rsi 0x7ff…ffad8 0x7ff…ffaa0

rbx 4 2

rax 5 -6

Memory address on stack Name/description of item Value

0x7ffffffffffffad8 Local var in main 0x20

0x7ffffffffffffad0 Return address back to main 0x400827

0x7ffffffffffffac8 Saved %rbx 4

0x7ffffffffffffac0 temp 5

0x7ffffffffffffab8 Unused ---------------

0x7ffffffffffffab0 Return address to sunny 0x40055f

0x7ffffffffffffaa8 Saved %rbx 5

0x7ffffffffffffaa0 temp 2

0x7ffffffffffffa98 Unused ---------------

0x7ffffffffffffa90 Return address to sunny 0x40055f

0x7ffffffffffffa88

0x7ffffffffffffa80

0x7ffffffffffffa78

0x7ffffffffffffa70

0x7ffffffffffffa68

0x7ffffffffffffa60

What value is finally returned to main by this call? 1
DON’T

FORGET

	Pages from cse351-16au-midterm-solution.pdf
	Pages from cse351-15sp-midterm-solution.pdf
	Pages from cse351-18wi-midterm-solution.pdf
	Pages from cse351-17sp-midterm-solution-2.pdf
	Pages from cse351-17au-midterm-solution.pdf
	Pages from cse351-18sp-midterm-solution.pdf
	Pages from cse351-18su-midterm-solution.pdf
	Pages from cse351-18wi-midterm-solution-2.pdf
	Pages from cse351-18su-midterm-solution-2.pdf
	Pages from cse351-17sp-midterm-solution.pdf

