CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here ©
Signed Integers with Two’s Complement
Two’s complement is the standard for representing signed integers:
e The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
e Binary addition is performed the same way for signed and unsigned

o The bit representation for the negative (additive inverse) of a two’s
complement number can be found by:

flipping all the bits and adding 1 (i.e. —x = ~x + 1).

The “number wheel” showing the relationship between 4-bit numerals and
their Two’s Complement interpretations is shown on the right:

e The largest number is 7 whereas the smallest number is -8

e There is a nice symmetry between numbers and their negative
counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer + 17

Unsigned: Two’s Complement:
11111111 -> 0000 0000 0111 1111 -> 1000 0000

2) How do you represent (if possible) the following numbers: 39, -39, 1277

Unsigned: Two’s Complement:
39: 0010 0111 39: 0010 0111
-39: Impossible -39: 1101 1001
127: 0111 1111 127: 0111 1111

3) Compute the following sums in binary using your Two’s Complement answers from above. Answer in hex.

a.39 >0b 00100111 |b. 127 >0 01111111

+(-39) >00b 11011001 |+ (39)-—>>00b11011001

0x 00<- 0b 00O 0O00O0DO0O |0x58<-0b 01011000

c.39 >0b 00100111 |4.127>00b 01111111

+(-127)->0b 1 0000001 |+ 393$.-.>»0b0010O01IT11

Ox A8<-0b 10101000 |0xA6<-0b1 0100110
4) Interpret each of your answers above and indicate whether or not overflow has occurred.

a. 39 + (-39) b. 127 + (-39)

Unsigned: 0 overflow Unsigned: 88 overflow

Two’s Complement: 0 no overflow Two’s Complement: 88 no overflow

c. 39 + (-127) d. 127 + 39

Unsigned: 168 no overflow Unsigned: 166 no overflow

Two’s Complement: -88 no overflow Two’s Complement: -90 overflow

Goals of Floating Point

Representation should include: [1] alarge range of values (both very small and very large numbers), [2] a high
amount of precision, and [3] real arithmetic results (e.g. o= and NaN).

IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:
Value = (-1)sien X Mantissaz X 2Exponent = (-1)S X 1.M X 2E-bias

The binary representation for floating point values uses three fields:

e S: encodes the sign of the number (0 for positive, 1 for negative)

e E: encodes the exponent in biased notation with a bias of 2w-1-1

e M: encodes the mantissa (or significand, or fraction) - stores the fractional portion, but does not include
the implicit leading 1.

L s | E | M |
float 1 bit 8 bits 23 bits
double 1 bit 11 bits 52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

E M Meaning
0 anything denormalized number (denorm)
1-254 anything normalized number
255 Zero infinity (o)
255 nonzero not-a-number (NaN)
Exercises:
Bias Notation
5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case? 26-H-1=15

6) Compare these two representations of E for the following values:

Exponent E (5 bits) E (8 bits)
1 1 /0 |0 [0 |O 1 /0 (0 |O |O |O (O |O
0 O (1 |1 |1 |1 O (1 |1 |1 (1 |1 |1 |1
-1 O (1 |1 |1 |0 o (1 |1 |1 (1 |1 |1 (O

Notice any patterns?

The representations are the same except the length of number of repeating bits in the middle are different.

Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into single precision floating point representation:

ojofrfrf2f2ryrjrjyrfofrfojojojofofofojoy0j]o

8) Convert the decimal number -7.375 into single precision floating point repr

1{1fofojojojofofrfry1rjo0j1f{1f{ofofojo0jojofo

9) Add the previous two floats from exercise 7 and 8 together.
Convert that number into single precision floating point representation:

1f{110j0j0j0foOfO|1T])1|{OfjOfO|l21T]OJO)JO|OfOfO]O

10) Let’s say that we want to represent the number 3145728.375 (2721 + 2”20 + 2/-2 + 2~-3)

a. Convert this number to into single precision floating point representation:

oj1f{ofof1f2y0j0j0f1f0f0J0Jj0OJ0OfO[Of0O]J0]0]0

0

0

0

0

0Ojojofofofof1

b. How does this number highlight a limitation of floating point representation?
Could only represent 2721 + 2720 + 2”-2. Not enough bits in the mantissa to hold 27-3

11) What are the decimal values of the following f1oats?
0x80000000 O0xFF94BEEF
-0 NaN
0x41180000 = 0b 0/100 0001 0]001 1000 0...0.
S=0,E=128+2 =130 — Exponent = E - bias = 3, Mantissa = 1.0011;
1.0011, x 23 =1001.1, =8+14+05=9.5

Floating Point Mathematical Properties

e Not associative: (2 4 250) — 250 1= 2 4 (250 - 250)
e Not distributive: 100 x (0.1 +0.2) != 100 x 0.1 + 100 x 0.2
e Not cumulative: 254+ 14+14+1+1 != 22544

Exercises:

0x41180000

+9.5

12) Based on floating point representation, explain why each of the three statements above occurs.

Associative: Only 23 bits of mantissa, so 2 + 250 = 250 (2 gets rounded off). So LHS = 0, RHS = 2.

Distributive: 0.1 and 0.2 have infinite representations in binary point (0.2 = 0.0011,), so the LHS and

RHS suffer from different amounts of rounding (try it!).

Cumulative: 1is 25 powers of 2 away from 225, so 225 + 1 = 225, but 4 is 23 powers of 2 away from 225, so

it doesn’t get rounded off.

13) If x and y are variable type float, give two differentreasons why (x+2*y) -y==x+y might evaluate to false.

(1) Rounding error: like what is seen in the examples above.

(2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.

1EEE 754 Float (32 bit) Flowchart

E
E = 0x00 E = 0x01—0xFE E = OxFF
\ 4
Denorm (no implicit 1) Normal (implicit 1) Special Cases
Exponent =-126 Exponent =E - 127

(-1)**0.M*2-126 (-1)°*1.M*2E-127

M=#0

NaN

