CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here :)

Signed Integers with Two's Complement

Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative (additive inverse) of a two's complement number can be found by:

The "number wheel" showing the relationship between 4 -bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer +1 ?

Unsigned:	Two's Complement:
$11111111->00000000$	$01111111->10000000$

2) How do you represent (if possible) the following numbers: $39,-\mathbf{3 9}, 127$?

Unsigned:	Two's Complement:
39: 0010 0111	$39: 00100111$
129: Impossible 01111111	$-39: 11011001$

3) Compute the following sums in binary using your Two's Complement answers from above. Answer in hex.

4) Interpret each of your answers above and indicate whether or not overflow has occurred.

a. $39+(-39)$	b. $127+(-39)$
Unsigned: 0 overflow	Unsigned: 88 overflow
Two's Complement: 0 no overflow	Two's Complement: 88 no overflow
c. $39+(-127)$	d. $127+39$
Unsigned: 168 no overflow	Unsigned: 166 no overflow
Two's Complement: -88 no overflow	Two's Complement: -90 overflow

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (e.g. ∞ and NaN).

IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:

$$
\text { Value }=(-1)^{\text {sign }} \times \text { Mantissa }_{2} \times 2^{\text {Exponent }}=(-1)^{\mathrm{S}} \times 1 . \mathrm{M}_{2} \times 2^{\text {E-bias }}
$$

The binary representation for floating point values uses three fields:

- S: encodes the sign of the number (0 for positive, 1 for negative)
- E: encodes the exponent in biased notation with a bias of $2^{\mathrm{w}-1}-1$
- M: encodes the mantissa (or significand, or fraction) - stores the fractional portion, but does not include the implicit leading 1.

	\mathbf{S}	\mathbf{E}	\mathbf{M}
	float	1 bit	8 bits
double	1 bit	11 bits	23 bits
			52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

\mathbf{E}	\mathbf{M}	Meaning
0	anything	denormalized number (denorm)
$1-254$	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

Bias Notation

5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case? $\underline{2^{(5-1)}-1=15}$
6) Compare these two representations of E for the following values:

Exponent	E (5 bits)					E (8 bits)								
1	1	0	0	0	0		1	0	0	0	0	0	0	0
0	0	1	1	1	1		0	1	1	1	1	1	1	1
-1	0	1	1	1	0		0	1	1	1	1	1	1	0

Notice any patterns?
The representations are the same except the length of number of repeating bits in the middle are different.

Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into single precision floating point representation:

0	0	1	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

8) Convert the decimal number -7.375 into single precision floating point representation:

1	1	0	0	0	0	0	0	1	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

9) Add the previous two floats from exercise 7 and 8 together.

$$
=-6.125
$$

Convert that number into single precision floating point representation:

1	1	0	0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

10) Let's say that we want to represent the number $3145728.375\left(2^{\wedge} 21+2^{\wedge} 20+2^{\wedge}-2+2^{\wedge}-3\right)$
a. Convert this number to into single precision floating point representation:

b. How does this number highlight a limitation of floating point representation? Could only represent $2^{\wedge} 21+2^{\wedge} 20+2^{\wedge}-2$. Not enough bits in the mantissa to hold $2^{\wedge}-3$
11) What are the decimal values of the following floats?

$$
0 \times 80000000
$$

0xFF94BEEF
0x41180000
-0
NaN
$+9.5$
$0 x 41180000=0 b 0|10000010| 00110000 \ldots 0$.
$S=0, E=128+2=130 \rightarrow$ Exponent $=E-$ bias $=3$, Mantissa $=1.0011_{2}$
$1.0011_{2} \times 2^{3}=1001.1_{2}=8+1+0.5=9.5$

Floating Point Mathematical Properties

- Not associative:

$$
\left(2+2^{50}\right)-2^{50}!=2+\left(2^{50}-2^{50}\right)
$$

- Not distributive: $100 \times(0.1+0.2)!=100 \times 0.1+100 \times 0.2$
- Not cumulative: $\quad 2^{25}+1+1+1+1!=2^{25}+4$

Exercises:

12) Based on floating point representation, explain why each of the three statements above occurs.

Associative: \quad Only 23 bits of mantissa, so $2+2^{50}=2^{50}$ (2 gets rounded off). So LHS $=0$, RHS $=2$.
Distributive: $\quad 0.1$ and 0.2 have infinite representations in binary point $\left(0.2=0 . \overline{0011}_{2}\right)$, so the LHS and RHS suffer from different amounts of rounding (try it!).
Cumulative: $\quad 1$ is 25 powers of 2 away from 2^{25}, so $2^{25}+1=2^{25}$, but 4 is 23 powers of 2 away from 2^{25}, so it doesn't get rounded off.
13) If x and y are variable type float, give two different reasons why ($x+2 * y$) $-y==x+y$ might evaluate to false.
(1) Rounding error: like what is seen in the examples above.
(2) Overflow: if x and y are large enough, then $x+2 * y$ may result in infinity when $x+y$ does not.

1EEE 754 Float (32 bit) Flowchart

