CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here ③

Signed Integers with Two's Complement

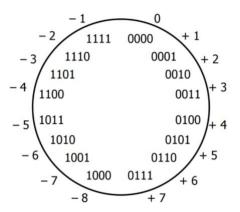
Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative value (additive inverse) of a Two's Complement number can be found by:

flipping all the bits and adding 1 (i.e. $-x = \sim x + 1$).

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8



Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer + 1?

<u>Unsigned</u> :	Two's Complement:

2) How do you represent (if possible) the following numbers: 39, -39, 127?

1	xx	m 10 1 .
	<u>Unsigned</u> :	<u>Two's Complement</u> :
	39:	39:
	-39:	-39:
	127:	127:

3) Compute the following sums in binary using your **Two's Complement** answers from above. *Answer in hex*.

compare the following same in Smary asing your 2005	dompionione and were in our above. This wer in hear
	b . 127 -> 0b
0x <- 0b	0x <- 0b
c. 39 -> 0b	d. 127 -> 0b
0x <- 0b	0x <- 0b

4) Interpret each of your answers above and indicate whether-or-not overflow has occurred.

a. 39+(-39)	b. 127+(-39)
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:
c. 39–127	d. 127+39
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results ($e.g. \approx$ and NaN).

IEEE 754 Floating Point Standard

The <u>value</u> of a real number can be represented in scientific binary notation as:

Value =
$$(-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^S \times 1.M_2 \times 2^{E-bias}$$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2^{w-1}-1
- **M**: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

	S	Е	M
float	1 bit	8 bits	23 bits
double	1 bit	11 bits	52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

Е	M	Meaning
0	anything	denormalized number (denorm)
1-254	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

Bias Notation

5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?

6) Compare these two representations of E for the following values:

Exponent	E (5 bits)	E (8 bits)
1		
0		
-1		

Notice any patterns?

Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into single precision floating point representation:

			•													_

8) Convert the decimal number -7.375 into single precision floating point representation:

9) Add the previous two floats from exercise 7 and 8 together. Convert that number into single precision floating point representation:

10) Let's say that we want to represent the number $3145728.125 (2^21 + 2^20 + 2^-3)$

_	Convert this	numbanta	into ainalo	nnogigion	flooting	agint no	nnagantation
a.	Convert this	number to	mito single	precision	noaung j	Juliu	presentation

Г																	
ı																i l	
ı																i I	

b. How does this number highlight a limitation of floating point representation?

11) What are the decimal values of the following floats?

0x80000000

0xFF94BEEF

0x41180000

Floating Point Mathematical Properties

- Not <u>associative</u>:
- $(2+2^{50})-2^{50} \neq 2+(2^{50}-2^{50})$
- Not <u>distributive</u>:
- $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
- Not <u>cumulative</u>:
- $2^{25} + 1 + 1 + 1 + 1 \neq 2^{25} + 4$

Exercises:

- 12) Based on floating point representation, explain why each of the three statements above occurs.
- 13) If x and y are variable type float, give two *different* reasons why (x+2*y)-y==x+y might evaluate to false.

1EEE 754 Float (32 bit) Flowchart

