
CSE351, Spring 2019L28: Course Wrap-Up

Java and C II & Course Wrap-Up
CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai Jack Eggleston John Feltrup
Britt Henderson Richard Jiang Jack Skalitzky
Sophie Tian Connie Wang Sam Wolfson
Casey Xing Chin Yeoh

https://xkcd.com/1760/

https://xkcd.com/1760/

CSE351, Spring 2019L28: Course Wrap-Up

Administrivia

 Lab 5, due TONIGHT, Friday (6/7)

 Memory Allocation

 Recommended that you watch the Lab 5 helper videos

 Sunday 6/9 is last day Lab 5 may be submitted (if one late
day is used)

 Final Exam: Wed, 6/12, 12:30-2:20 pm in KNE 130

 Review session Tuesday June 11, 3-6pm in ECE 105

 Check course calendar for office hours for next week

 Course evaluations now open, please fill out!

2

CSE351, Spring 2019L28: Course Wrap-Up

Today

 Finish Java & C

 End-to-end Review

 What happens after you write your source code?
• How code becomes a program

• How your computer executes your code

 Review of high-level concepts & course themes

 More useful for “5 years from now” than “next week’s final”

3

CSE351, Spring 2019L28: Course Wrap-Up

C: The Low-Level High-Level Language

 C is a “hands-off” language that “exposes” more of
hardware (especially memory)

 Weakly-typed language that stresses data as bits
• Anything can be represented with a number!

 Unconstrained pointers can hold address of anything
• And no bounds checking – buffer overflow possible!

 Efficient by leaving everything up to the programmer

CSE351, Spring 2019L28: Course Wrap-Up

C Data Types

 C Primitive types

 Fixed sizes and alignments

 Characters (char), Integers (short, int, long),
Floating Point (float, double)

 C Data Structures

 Arrays – contiguous chunks of memory
• Multidimensional arrays = still one continuous chunk, but row-major

• Multi-level arrays = array of pointers to other arrays

 Structs – structured group of variables
• Struct fields are ordered according to declaration order

• Internal fragmentation: space between members to satisfy member
alignment requirements (aligned for each primitive element)

• External fragmentation: space after last member to satisfy overall struct
alignment requirement (largest primitive member)

CSE351, Spring 2019L28: Course Wrap-Up

C and Memory

 Using C allowed us to examine how we store and
access data in memory

 Endianness (only applies to memory)
• Is the first byte (lowest address) the least significant (little endian) or

most significant (big endian) of your data?

 Array indices and struct fields result in calculating proper
addresses to access

 Consequences of your code:

 Affects performance (locality)

 Affects security

 But to understand these effects better, we had to
dive deeper…

CSE351, Spring 2019L28: Course Wrap-Up

How Code Becomes a Program

7

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C source code

Assembly files

Object files

Executable program

Static libraries

Loader (the OS)

Hardware

CSE351, Spring 2019L28: Course Wrap-Up

C Language

Instruction Set Architecture

8

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture

Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware

Instruction set

CISC

RISC

CSE351, Spring 2019L28: Course Wrap-Up

CPU

Assembly Programmer’s View

 Programmer-visible state
 PC: the Program Counter (%rip in x86-64)

• Address of next instruction

 Named registers

• Together in “register file”

• Heavily used program data

 Condition codes

• Store status information about most recent
arithmetic operation

• Used for conditional branching 9

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory
 Byte-addressable array

 Huge virtual address
space

 Private, all to yourself…

CSE351, Spring 2019L28: Course Wrap-Up

CPU

Program’s View

10

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Spring 2019L28: Course Wrap-Up

Program’s View

 Instructions
 Data movement

• mov, movz, movz

• push, pop

 Arithmetic
• add, sub, imul

 Control flow
• cmp, test

• jmp, je, jgt, ...

• call, ret

 Operand types
 Literal: $8

 Register: %rdi, %al

 Memory: D(Rb,Ri,S) = D+Rb+Ri*S

• lea: not a memory access!

11

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Spring 2019L28: Course Wrap-Up

Program’s View

 Procedures
 Essential abstraction

 Recursion…

 Stack discipline
 Stack frame per call

 Local variables

 Calling convention
 How to pass arguments

• Diane’s Silk Dress Costs $89

 How to return data

 Return address

 Caller-saved / callee-saved registers

12

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Spring 2019L28: Course Wrap-Up

Program’s View

 Heap data
 Variable size

 Variable lifetime

 Allocator
 Balance throughput and memory

utilization

 Data structures to keep track of
free blocks

 Garbage collection
 Must always free memory

 Garbage collectors help by finding
anything reachable

 Failing to free results in
memory leaks

13

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Spring 2019L28: Course Wrap-Up

But remember… it’s all an illusion! 😮

 Context switches
 Don’t really have CPU to yourself

 Virtual Memory
 Don’t really have 264 bytes of

memory all to yourself

 Allows for indirection (remap
physical pages, sharing…)

14

CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

CSE351, Spring 2019L28: Course Wrap-Up

Process 3
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1
High addresses

Low
addresses

Hardware

Process 2
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

But remember… it’s all an illusion! 😮

 fork

 Creates copy of the process

 execv

 Replace with new program

 wait

 Wait for child to die (to reap it and
prevent zombies)

15

Process 1
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1
High addresses

Low
addresses

CSE351, Spring 2019L28: Course Wrap-Up

Virtual Memory

16

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

 Address Translation
 Every memory access must first be converted from virtual to physical

 Indirection: just change the address mapping when switching processes

 Luckily, TLB (and page size) makes it pretty fast

CSE351, Spring 2019L28: Course Wrap-Up

But Memory is Also a Lie! 😮

 Illusion of one flat array of bytes
 But caches invisibly make accesses to physical addresses faster!

 Caches
 Associativity tradeoff with miss rate and access time

 Block size tradeoff with spatial and temporal locality

 Cache size tradeoff with miss rate and cost

17

“Memory”

CPU

%rip
Registers

Condition
Codes

Main Memory
DRAM

L3
Cache

L2
Cache

L1
Cache

CSE351, Spring 2019L28: Course Wrap-Up

Memory Hierarchy

18

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Spring 2019L28: Course Wrap-Up

Review of Course Themes

 Review course goals

 They should make much more sense
now!

CSE351, Spring 2019L28: Course Wrap-Up

Big Theme: Abstractions and Interfaces

 Computing is about abstractions

 (but we can’t forget reality)

 What are the abstractions that we use?

 What do you need to know about them?

 When do they break down and you have to peek under the
hood?

 What bugs can they cause and how do you find them?

 How does the hardware relate to the software?

 Become a better programmer and begin to understand the
important concepts that have evolved in building ever more
complex computer systems

20

CSE351, Spring 2019L28: Course Wrap-Up

Little Theme 1: Representation

 All digital systems represent everything as 0s and 1s
 The 0 and 1 are really two different voltage ranges in the wires

 Or magnetic positions on a disc, or hole depths on a DVD, or even DNA…

 “Everything” includes:
 Numbers – integers and floating point

 Characters – the building blocks of strings

 Instructions – the directives to the CPU that make up a program

 Pointers – addresses of data objects stored away in memory

 Encodings are stored throughout a computer system
 In registers, caches, memories, disks, etc.

 They all need addresses (a way to locate)
 Find a new place to put a new item

 Reclaim the place in memory when data no longer needed

21

CSE351, Spring 2019L28: Course Wrap-Up

Little Theme 2: Translation

 There is a big gap between how we think about
programs and data and the 0s and 1s of computers

 Need languages to describe what we mean

 These languages need to be translated one level at a time

 We know Java as a programming language

 Have to work our way down to the 0s and 1s of computers

 Try not to lose anything in translation!

 We encountered C language, assembly language, and
machine code (for the x86 family of CPU architectures)

22

CSE351, Spring 2019L28: Course Wrap-Up

Little Theme 3: Control Flow

 How do computers orchestrate everything they are doing?

 Within one program:
 How do we implement if/else, loops, switches?

 What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

 How do we know what to do upon “return”?

 Across programs and operating systems:
 Multiple user programs

 Operating system has to orchestrate them all

• Each gets a share of computing cycles

• They may need to share system resources (memory, I/O, disks)

 Yielding and taking control of the processor

• Voluntary or “by force”?

23

CSE351, Spring 2019L28: Course Wrap-Up

Course Perspective

 CSE351 will make you a better programmer
 Purpose is to show how software really works

 Understanding the underlying system makes you more effective

• Better debugging

• Better basis for evaluating performance

• How multiple activities work in concert (e.g., OS and user programs)

 Not just a course for hardware enthusiasts!

• What every CSE major needs to know (plus many more details)

• See many patterns that come up over and over in computing (like
caching and indirection)

 “Stuff everybody learns and uses and forgets not knowing”

 CSE351 presents a world-view that will empower you
 The intellectual and software tools to understand the trillions+ of 1s and

0s that are “flying around” when your program runs
24

CSE351, Spring 2019L28: Course Wrap-Up

Courses: What’s Next?

 Staying near the hardware/software interface:
 EE271/CSE369: Digital Design – basic hardware design using FPGAs

 EE/CSE474: Embedded Systems – software design for microcontrollers

 Systems software
 CSE341: Programming Languages (or CSE413 for non-majors)

 CSE332: Data Structures and Parallelism (or CSE373 for non-majors)

 CSE333: Systems Programming – building well-structured systems in
C/C++ (or CSE374 for non-majors)

 Looking ahead
 CSE401: Compilers (pre-reqs: 332) (or CSE413 for non-majors)

 CSE451: Operating Systems (pre-reqs: 332, 333)

 CSE461: Networks (pre-reqs: 332, 333)

25

CSE351, Spring 2019L28: Course Wrap-Up

Thanks for a great quarter!

 Huge thanks to your awesome TAs!

 Don’t be a stranger!

 I’ll likely be teaching this course again next year

26

