
CSE351, Spring 2019L27: Java and C

Java and C
CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai Jack Eggleston John Feltrup
Britt Henderson Richard Jiang Jack Skalitzky
Sophie Tian Connie Wang Sam Wolfson
Casey Xing Chin Yeoh

https://xkcd.com/801/

https://xkcd.com/801/

CSE351, Spring 2019L27: Java and C

Administrivia

 Lab 5, due Friday (6/7)

 Memory Allocation

 Recommended that you watch the Lab 5 helper videos

 Sunday 6/9 is last day Lab 5 may be submitted (if one late
day is used)

 Final Exam: Wed, 6/12, 12:30-2:20 pm in KNE 130

 Course evaluations now open, please fill out!

2

CSE351, Spring 2019L27: Java and C

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2019L27: Java and C

Java vs. C

 Reconnecting to Java (hello CSE143!)

 But now you know a lot more about what really happens
when we execute programs

 We’ve learned about the following items in C; now
we’ll see what they look like for Java:

 Representation of data

 Pointers / references

 Casting

 Function / method calls including dynamic dispatch

4

CSE351, Spring 2019L27: Java and C

Worlds Colliding

 CSE351 has given you a “really different feeling”
about what computers do and how programs execute

 We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

 It’s not – it’s just a higher-level of abstraction

 Connect these levels via how-one-could-implement-Java in
351 terms

5

CSE351, Spring 2019L27: Java and C

Meta-point to this lecture

 None of the data representations we are going to talk
about are guaranteed by Java

 In fact, the language simply provides an abstraction
(Java language specification)

 Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

 But it is important to understand an implementation of the
lower levels – useful in thinking about your program

6

CSE351, Spring 2019L27: Java and C

Data in Java

 Integers, floats, doubles, pointers – same as C

 “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

 Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

 No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

 null is typically represented as 0 but “you can’t tell”

 Much more interesting:

 Arrays

 Characters and strings

 Objects
7

CSE351, Spring 2019L27: Java and C

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4
bytes)
 array.length returns value of this field

 Since it has this info, what can it do?

8

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2019L27: Java and C

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int – 4
bytes)
 array.length returns value of this field

 Every access triggers a bounds-check
 Code is added to ensure the index is within bounds

 Exception if out-of-bounds

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2019L27: Java and C

Data in Java: Characters & Strings

 Two-byte Unicode instead of ASCII
 Represents most of the world’s alphabets

 String not bounded by a ‘\0’ (null character)
 Bounded by hidden length field at beginning of string

 All String objects read-only (vs. StringBuffer)

10

Example: the string “CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Spring 2019L27: Java and C

Data in Java: Objects

 Data structures (objects) are always stored by reference, never
stored “inline”
 Include complex data types (arrays, other objects, etc.) using references

11

C:

 a[] stored “inline” as part of
struct

struct rec {

int i;

int a[3];

struct rec *p;

};

Java:

 a stored by reference in object

class Rec {

int i;

int[] a = new int[3];

Rec p;

...

}

i a p

0 4 16 24

i a p

0 4 2012

4 16

3

0

CSE351, Spring 2019L27: Java and C

Pointer/reference fields and variables

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like r->a in C

 So no Java field needs more than 8 bytes

12

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

C: Java:

CSE351, Spring 2019L27: Java and C

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to [the starts of] objects
 Can only be dereferenced to access a field or element of that object

13

struct rec {

int i;

int a[3];

struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])); // ptr

class Rec {

int i;

int[] a = new int[3];

Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1); // ref, index

r r

i a p

0 4 16 24

i a p

0 4 2012

int[3]

4 16

3

0

Java:C:

CSE351, Spring 2019L27: Java and C

Casting in C (example from Lab 5)

 Can cast any pointer into any other pointer
 Changes dereference and arithmetic behavior

14

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

...

int x;

BlockInfo *b;

BlockInfo *newBlock;

...

newBlock = (BlockInfo *) ((char *) b + x);

...

Cast back into
BlockInfo * to use
as BlockInfo struct

Cast b into char * to
do unscaled addition

s n p

80 16 24

s n p

x

CSE351, Spring 2019L27: Java and C

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

15

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

CSE351, Spring 2019L27: Java and C

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

16

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)
✗ Compiler error: Wrong direction – elements in Car

not in Vehicle (wheels)
✗ Runtime error: Vehicle does not contain all

elements in Boat (propellers)
✓ v2 refers to a Car at runtime
✗ Compiler error: Unconvertable types – b1 is

declared as type Boat

CSE351, Spring 2019L27: Java and C

Java Object Definitions

17

class Point {

double x;

double y;

Point() {

x = 0;

y = 0;

}

boolean samePlace(Point p) {

return (x == p.x) && (y == p.y);

}

}

...

Point p = new Point();

...

constructor

fields

method(s)

creation

CSE351, Spring 2019L27: Java and C

Java Objects and Method Dispatch

 Virtual method table (vtable)
 Like a jump table for instance (“virtual”) methods plus other class info

 One table per class

 Object header : GC info, hashing info, lock info, etc.
 Why no size?

18

code for Point() code for samePlace()

vtable for class Point:

q

xvtable ptr yheader

Point object

p
xvtable ptr yheader

Point object

CSE351, Spring 2019L27: Java and C

Java Constructors

 When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

19

Point p = new Point(); Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vtable = &Point_vtable;

p->vtable[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvtable ptr yheader

Point object

C pseudo-translation:

CSE351, Spring 2019L27: Java and C

Java Methods

 Static methods are just like functions

 Instance methods:
 Can refer to this;
 Have an implicit first parameter for this; and
 Can be overridden in subclasses

 The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

20

p.samePlace(q); p->vtable[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p

xvtable ptr yheader

Point object

CSE351, Spring 2019L27: Java and C

Subclassing

 Where does “z” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor

 To override “samePlace”, use same vtable position

 Add new pointer at end of vtable for new method “sayHi”

21

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

CSE351, Spring 2019L27: Java and C

Subclassing

22

New code for
samePlace

Old code for
constructor

sayHi tacked on at end
Code for
sayHi

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

xvtable ptr yheader

ThreeDPoint object

z

constructor samePlace
vtable for

ThreeDPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Spring 2019L27: Java and C

code for Point()

code for Point’s samePlace()
Point vtable:

xvtable ptr yheader

Point object

p ???

Dynamic Dispatch

23

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtable[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvtable ptr yheader

ThreeDPoint object

z

ThreeDPoint

vtable:

CSE351, Spring 2019L27: Java and C

Ta-da!

 In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

 You were tested on this endlessly

 The “trick” in the implementation is this part:
p->vtable[i](p,q)

 In the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

 Dispatch determined by p, not the class that defined a
method

24

CSE351, Spring 2019L27: Java and C

Practice Question

 Assume: 64-bit pointers and that a Java object header is 8 B

 What are the sizes of the things being pointed at by ptr_c
and ptr_j?

25

struct c {

int i;

char s[3];

int a[3];

struct c *p;

};

struct c* ptr_c;

class jobj {

int i;

String s = "hi";

int[] a = new int[3];

jobj p;

}

jobj ptr_j = new jobj();

CSE351, Spring 2019L27: Java and C

Hardware Hardware

Implementing Programming Languages

 Many choices in how to implement programming models

 We’ve talked about compilation, can also interpret

 Interpreting languages has a long history
 Lisp, an early programming language, was interpreted

 Interpreters are still in common use:
 Python, Javascript, Ruby, Matlab, PHP, Perl, …

26

Your source code

Binary executable

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Spring 2019L27: Java and C

An Interpreter is a Program

 Execute (something close to) the source code directly

 Simpler/no compiler – less translation

 More transparent to debug – less translation

 Easier to run on different architectures – runs in a simulated
environment that exists only inside the interpreter process
 Just port the interpreter (program), not the program-being-interpreted

 Slower and harder to optimize

27

Interpreter
implementation

Interpreter binary

Your source code

CSE351, Spring 2019L27: Java and C

Interpreter vs. Compiler

 An aspect of a language implementation
 A language can have multiple implementations

 Some might be compilers and other interpreters

 “Compiled languages” vs. “Interpreted languages” a misuse of
terminology
 But very common to hear this

 And has some validation in the real world (e.g. JavaScript vs. C)

 Also, as about to see, modern language implementations are
often a mix of the two. E.g. :
 Compiling to a bytecode language, then interpreting

 Doing just-in-time compilation of parts to assembly for performance

28

CSE351, Spring 2019L27: Java and C

“The JVM”

 Java programs are usually run by a
Java virtual machine (JVM)

 JVMs interpret an intermediate language called Java
bytecode

 Many JVMs compile bytecode to native machine code
• Just-in-time (JIT) compilation

• http://en.wikipedia.org/wiki/Just-in-time_compilation

 Java is sometimes compiled ahead of time (AOT) like C

29

Note: The JVM is different than the CSE VM running
on VMWare. Yet another use of the word “virtual”!

http://en.wikipedia.org/wiki/Just-in-time_compilation

CSE351, Spring 2019L27: Java and C

Compiling and Running Java

1. Save your Java code in a .java file

2. To run the Java compiler:
 javac Foo.java

 The Java compiler converts Java into Java bytecodes
• Stored in a .class file

3. To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an interpreter)
 For Java, this interpreter is called the Java Virtual Machine (the JVM)

 To run the virtual machine:

 java Foo

 This Loads the contents of Foo.class and interprets the bytecodes

30

CSE351, Spring 2019L27: Java and C

Virtual Machine Model

31

High-Level Language Program
(e.g. Java, C)

Virtual Machine Language
(e.g. Java bytecodes)

Native Machine Language

(e.g. x86, ARM, MIPS)

Bytecode compiler
(e.g. javac Foo.java)

Virtual machine (interpreter)
(e.g. java Foo)

Ahead-of-time
compiler

JIT
compiler

run time

compile time

CSE351, Spring 2019L27: Java and C

Java Bytecode

 Like assembly code for JVM,
but works on all JVMs
 Hardware-independent!

 Typed (unlike x86 assembly)

 Strong JVM protections

32

0 1 2 3 4 n

variable table

operand stack

constant
pool

Holds pointer this

Other arguments to method

Other local variables

CSE351, Spring 2019L27: Java and C

JVM Operand Stack

33

iload 1 // push 1st argument from table onto stack

iload 2 // push 2nd argument from table onto stack

iadd // pop top 2 elements from stack, add together, and

// push result back onto stack

istore 3 // pop result and put it into third slot in table

mov 8(%ebp), %eax

mov 12(%ebp), %edx

add %edx, %eax

mov %eax, -8(%ebp)

Compiled
to (IA32) x86:

Bytecode:

0 1 2 3 4 n

constant
pool

variable table
operand stack

JVM:

Holds pointer this

Other arguments to method
Other local variables

‘i’ = integer,
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
‘d’ for double, ...

No registers or stack locations!
All operations use operand stack

CSE351, Spring 2019L27: Java and C

A Simple Java Method

34

Method java.lang.String getEmployeeName()

0 aload 0 // "this" object is stored at 0 in the var table

1 getfield #5 <Field java.lang.String name>

// getfield instruction has a 3-byte encoding

// Pop an element from top of stack, retrieve its

// specified instance field and push it onto stack

// "name" field is the fifth field of the object

4 areturn // Returns object at top of stack

2A B4 00 05 B0As stored in the .class file:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

0

aload_0 getfield 00 05 areturn

1 4Byte number:

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Spring 2019L27: Java and C

Class File Format

 Every class in Java source code is compiled to its own class file

 10 sections in the Java class file structure:
 Magic number: 0xCAFEBABE (legible hex from James Gosling – Java’s inventor)

 Version of class file format: The minor and major versions of the class file

 Constant pool: Set of constant values for the class

 Access flags: For example whether the class is abstract, static, final, etc.

 This class: The name of the current class

 Super class: The name of the super class

 Interfaces: Any interfaces in the class

 Fields: Any fields in the class

 Methods: Any methods in the class

 Attributes: Any attributes of the class (for example, name of source file, etc.)

 A .jar file collects together all of the class files needed for
the program, plus any additional resources (e.g. images)

35

CSE351, Spring 2019L27: Java and C

Disassembled
Java Bytecode

36

Compiled from Employee.java

class Employee extends java.lang.Object {

public Employee(java.lang.String,int);

public java.lang.String getEmployeeName();

public int getEmployeeNumber();

}

Method Employee(java.lang.String,int)

0 aload_0

1 invokespecial #3 <Method java.lang.Object()>

4 aload_0

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload_0

10 iload_2

11 putfield #4 <Field int idNumber>

14 aload_0

15 aload_1

16 iload_2

17 invokespecial #6 <Method void

storeData(java.lang.String, int)>

20 return

Method java.lang.String getEmployeeName()

0 aload_0

1 getfield #5 <Field java.lang.String name>

4 areturn

Method int getEmployeeNumber()

0 aload_0

1 getfield #4 <Field int idNumber>

4 ireturn

Method void storeData(java.lang.String, int)

…

> javac Employee.java

> javap -c Employee

http://en.wikipedia.org/wiki/Java
_bytecode_instruction_listings

http://en.wikipedia.org/wiki/Java_bytecode_instruction_listings

CSE351, Spring 2019L27: Java and C

Other languages for JVMs

 JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
 AspectJ, an aspect-oriented extension of Java

 ColdFusion, a scripting language compiled to Java

 Clojure, a functional Lisp dialect

 Groovy, a scripting language

 JavaFX Script, a scripting language for web apps

 JRuby, an implementation of Ruby

 Jython, an implementation of Python

 Rhino, an implementation of JavaScript

 Scala, an object-oriented and functional programming language

 And many others, even including C!

 Originally, JVMs were designed and built for Java (still the
major use) but JVMs are also viewed as a safe, GC’ed platform

37

CSE351, Spring 2019L27: Java and C

Microsoft’s C# and .NET Framework

 C# has similar motivations as Java
 Virtual machine is called the

Common Language Runtime

 Common Intermediate Language
is the bytecode for C# and other
languages in the .NET framework

38

CSE351, Spring 2019L27: Java and C

We made it! ☺😎😂

39

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

