WA UNIVERSITY of WASHINGTON

L25: Memory Allocation |l CSE351, Spring 2019

Memory Allocation i

CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

Gavin Cai

Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

MY ACCESS To RESOURCES ON [SUBJTECT] OVER TIME:
1985 1990 1995 2000 7005 200 205 2020

BOOK ON
SUBJECT
[suBTECT].PDF
SITE GOES DOWN, BACKEND
[SUBTECT] WEB DATABASE DATA NOT ON mma
[suBrECT] MOBILE APP m-ﬂ m?a
(LOcAL UNIVERSITY PROJELT)
[SUBJTECT] ANALYSIS SOFTWARE |-—§g,‘ me 'Lfm%
INTERACTIVE [SUBJTECT] CD-ROM 1o b e P TER
LIBRARY MICROFILM
[SUBTECT] COLLECTION

IT¥ UNSETTUNG TO REALIZE HOU QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WITHOUT ONGOING LIORK TO MAINTAIN THEM.

http://xkcd.com/1909/

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Administrivia

+» Homework 5, due Friday (5/31)

= Processes and Virtual Memory

+» Lab 5, released Wed Evening, due Friday (6/7)
" Memory Allocation
= Recommended that you watch the Lab 5 helper videos

= Sunday 6/9 is last day Lab 5 may be submitted (if one late
day is used)

+» Final Exam: Wed, 6/12, 12:30-2:20 pm in KNE 130

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Peer Instruction Question

AR C D
+ Which allocation strategy and requests @Sllzc;;ad ‘ '/ —
remove é(ternal fragmen@n this /
Heap? B3 was the last fulfilled request. >0 2
" http://pollev.com/rea 10
(A) Best-fit: 20|

al loc(50), mal IOC(SO) = 1

(B) First-fit:)
_malloe€50), malloc(30) >0
(C) Next-fit:

mal loc(30), malloc(50) 50
(D) Next-fit: T

fh
malloc(50), mallee€30) " "

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON L25:

Memory Allocation Il

Implicit List: Allocating in a Free Block

+» Allocating in a free block: splitting
= Since allocated space might be smaller than free space, we

might want to split the block

Assume Ptr points to a free block and has unscaled pointer arithmetic

/ new ‘rvee

%%Z%Z¢%%y |

S\o\’.‘\'

void spllt(ptr b, |nt bytes) {
(1) int newsize

® 1Int oldglze = *b;
(2) *b = newsize;

@ if (newsize < oldsize)

}

3 *(b+newsize) = old&ize - newSize;

// bytes = desired block size
((bytes+15) >> 4) << 43¥¢// round up to multiple of 16
* // why not mask out low bit?
// initially unallocated

// set length In remaining
// part of block (UNSCALED +)

“&A” 16]1

malloc(24)
ptr b = f.nd(24+§)
split(b, 24+8)
allocate(b)

Free word

Allocated word

IC se'h A=]_ 16|1

Newly-allocated

480 16/1
b

32/1 1610, |16]L
® ®

word

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
= void free(ptr p) {*(p-WORD) &= -2;}

" But can lead to “false fragmentation”

16/1 (321 16/0, l16[2
9 | T | | Free word
P Allocated word
/\/\/\ Block of interest
free(p) 161 1320 160 |16/
mal loc(40) Oops! There is enough free space, but

the allocator won’t be able to find it

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Implicit List: Coalescing with Next

% Join (coalesce) with next block if also free

_—

N .
1611 3—2)1 T ©0 6l Free word
b P nexct Allocated word
/\/_\ Block of interest
free(p) 16/1 148/ 16|OL\ 16/1
\‘~logkuﬂygone
void free(ptr p) { // p points to payload
ptr b = p — WbRD // b points to block header
*b &= -2; // clear allocated bit
ptr next = b + *b // find next block (UNSCALED +)
it ((*next & 1) == 0) // if next block i1s not allocated,
*h += *nxt; // add its size to this block
+

+» How do we coalesce with the previous block? we m:lr
Curvren y

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Implicit List: Bidirectional Coalescing

% Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

32/0 32/0132/1 32/148/0 48/0/32/1 32/1
\/_\\/\/\/

size al a=1: allocated block

Format of peader

allocated and a =0: free block
free blocks:
payloaql 2l size: block size (in bytes)
Boundary tags padding
| payload: application data

Footer size a| (allocated blocks only)

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

WA UNIVERSITY of WASHINGTON

@@ Coalescing

Caseli i
m1 1
XC{_® 7
K(n /4
1 m2 1
m?2 1
Case 3| ™M 10
\
JA—@D) 0
@Yy |1
X n ,1/-
S m2 1
m?2 1

m1 1
m1 1
n 0
n 0
m?2 1
m?2 1
n+ml 0
n+ml 0
m?2 1
m?2 1

L25: Memory Allocation I

Case2 | _mi |1
A ml

=]
[\

v] n | |1

m) [0

m?2 0

Case4| Ml 10
+

/@) o

n{/ 1
N+

4 n / 1

N Fnz")’ 0

m?2 0

CSE351, Spring 2019

m1

m1

n+m?2

n+m?2

n+ml+m?2

n+ml+m?2

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Implicit Free List Review Questions

c\;\v:\:)r
'\J/;¢‘-\\ ,/’/"*\\l;’/’ ————— .'\‘\) _ n:s
Bod 32/0\@ 3214810 4803213 3211
0 O _ -7 O
+ What is the block header? What do we store and how?
Slores info cboct black sizeot bude |, is-alloceted?

’\Llo\,.e,ﬁuﬂ-o'(hecder
+» What are boundary tags and why do we need them?
header and foster (ame info) so e @n Traverse list in ether diredon
| (pcr‘ﬂCu\ﬁr\y for Coa‘esdnj)
+ When we coalesce free blocks, how many neighboring blocks

do we need to check on either side? Why is this?
)us* 1 - c\dja(en‘\' 'Frec \o‘od() ﬁ\m\(} l'vcwc a\nu\y \be(-'V\ C'aox‘@keo\

+ If want to check the size of the n-th block forward from the
current block, how many memory accesses do | make?

'YU-(: neek h rcod Cuvrer\+ 'o\ock‘s kea&er A lu:i' I\ L\ea}(r gr ‘{urge‘]' blogk
1o get the si2e

10

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

= 8-byte box (free)

Keeping Track of Free Blocks _ g-byte box (allocated)

1) Implicit free list using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free

’f__N\ /’—5\\ ~~~~~~
/’ ' Vo A/’ ~

40 32 48 16

2) Explicit free list amongonly the free blocks, Jusing pointers
) Explicit f &v/\ g P

/_\

40| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
11

WA UNIVERSITY of WASHINGTON L25: Memory Allocation I

CSE351, Spring 2019

Explicit Free Lists

Allocated block: Free block:
size a size a
S r/next
< 7 poin‘\'m
— -payload and Py
padding
size a size a

(same as implicit free list)

+ Use list(s) of free blocks, rather than implicit list of all blocks
" The “next” free block could be anywhere in the heap
- So we need to store next/previous pointers, not just sizes
= Since we only track free blocks, so we can use “payload” for pointers
= Still need boundary tags (header/footer) for coalescing

12

WA UNIVERSITY of WASHINGTON L25: Memory Allocation I

Doubly-Linked Lists

NULL prev mvf" WLL
o Linear Root ‘/\ O ‘K/’ ‘/\ coe /\\‘/’ O
(pointer) \)
= Needs head/root pointer strwdt

" First node prev pointer is NULL
" |Last node next pointer is NULL
" Good for first-fit, best-fit

Can move

+ Circular o ey mode

in Tree \igt

= Still have pointer to tell you which node to start with

= No NULL pointers (term condition is back at starting point)
® Good for next-fit, best-fit

Start (@ N\ 0\@ 0'/}.\\‘/ &\p @

13

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Explicit Free Lists

+ Logically: doubly-linked list

A |1 8 [C
“hode O “node 1" “hode 2

+ Physically: blocks can be in any order

—
v

/ Forward (next) links
A /Q B

32| —7 32/32 32048 /| | |48]32 3232/ |, 32

C _/
‘K Back (prev) links

00 &

14

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Allocating From/\Epricit Free Lists

Note: These diagrams are ot yery specific about where inside a block a pointer points.
In reality we would always\ oint to one place (e.g. start/header of a block).

Before
f node _I_\:L n \i$+ .\'
i selected
‘FTQC umk

/
allocated /[§ree
/

node n in it

hode nH ia ligh

et

Vo)
After
Lo .
(with splitting) ® | poriters upddbed;
2 in nole N
I A wode m-|
\ I i~ wode m+4\
st node N n \lf\'
. l Some |r\\xwv\\pt’s'6‘i Y\nc)es
v ’PVCQ l'\'s-\'

malloc(..)

15

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before nobe -l °
Sore herp
node m
store here
hode "_bﬂ o
z'{ltﬁ; allocated) sl node el L Poweq upcldea\

1 fewes node in Hree llist

Nnow the hew nide n

malloc(..)

16

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

k LIFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
- Pro: simple and constant time

- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
- Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)
- Con: requires linear-time search

- Pro: studies suggest fragmentation is better than the alternative

17

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free

Block being freed —

Allocated Free Allocated Free

+» Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

4

+~ How do we tell if a neighboring block if free? |
con S—\-',ll wse \Q)\mda/\/ ‘\’ajs (()on'l' need +¢) sear ¢! ‘{\\m‘ | ,f‘) o‘ﬂ\g, ;Mrl-(w\e,‘ ’wf\)' PSSIL’Q
(see Lab‘S) 18

WA UNIVERSITY of WASHINGTON

Freeing with LIFO Policy (Case 1) [

Before

Root

L25: Memory Allocation I

CSE351, Spring 2019

shown, but don’t

Boundary tags not
forget about them!

free(®)

« Insert the freed block at the root of the list

After

node O

O

!

Q«M}kuﬂa\ hode i -ﬁ@

new wode 1

19

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Boundary tags not

Freeing with LIFO Policy (Case 2) | shown, butdon

forget about them!

Before free(p) node -l
sore ®
node QO
Root e m o
here freed Hock L\a(’veﬂeJ\% be aAJa(m-\'(PA L
40 Y\Dde n O'F 'Free \\:I'

node Nt \

+ Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

.g r‘,[,\‘i'e/_) (A()J‘fjeo\

A.fter @hum\wr 6(r\oJeS ih@
®
Root @)

hew node O ‘ P
2
hode _’Vﬂ .

heL hoAf_J_:

20

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Boundary tags not

Freeing with LIFO Policy (Case 3) | shown, butdon

forget about them!

Before free(®)
node n-l ®

node O
Q O

+ Splice predecessor block out of list, coalesce both memory

blocks, and insert the new block at the root of the list
5 Folv\"'e/q upﬁc‘ﬁﬂr\

After Seme Number of nodes
in Free list+
Newnode N

hew hote 4

L)

Root node n i
}?@ed block 4d)Geent \ I

| 4o rode . of frce list | |

—

hoae n+\

21

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Boundary tags not

Freeing with LIFO Policy (Case 4) | shown, butdon

forget about them!

Before free
hode m-\ ®) @ node E__
node (6}
Root node m o
freed bk adjucent I I node 2
o nodes m and N
e - ode m+| | @ o n + |
of free ligt hee ode 12

(Gsimme)

+ Splice predecessor and successor blocks out of list, coalesce all 3
memory blocks, and insert the new block at the root of the list

-:?' ’l"\":'i lAﬁAM
After 1 '((’wer hode In ‘ﬁree \st

Y\e\.\,v\\x\e 'w_k
®

©
00 new node __] O
P
hode mt| | @ new hode

hew maae_;l_

® ¢
e

22

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and At
padding
Size a Size a

(same as implicit free list)

+» Lab 5 suggests no...

23

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Explicit List Summary

«» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks
- Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

24

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

BONUS SLIDES

The following slides are about the SeglList Allocator, for
those curious. You will NOT be expected to know this
material.

25

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

Seglist Allocator

«» Have an array of free lists for various size classes

« To allocate a block of size n:

= Search appropriate free list for block of size m = n

= |f an appropriate block is found:
- [Optional] Split block and place free fragment on appropriate list

" |f no block is found, try the next larger class
- Repeat until block is found
+ If no block is found:
= Request additional heap memory from OS (using sbrk)

" Place remainder of additional heap memory as a single free

block in appropriate size class
26

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

SeglList Allocator

«» Have an array of free lists for various size classes

+» To free a block:
= Mark block as free
" Coalesce (if needed)
" Place on appropriate class list

27

WA UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Spring 2019

SeglList Advantages

+» Higher throughput

= Search is log time for power-of-two size classes

+» Better memory utilization

" First-fit search of seglist approximates a best-fit search of
entire heap

= FExtreme case: Giving every block its own size class is no
worse than best-fit search of an explicit list

" Don’t need to use space for block size for the fixed-size
classes

28

WA UNIVERSITY of WASHINGTON

L25: Memory Allocation I

CSE351, Spring 2019

Freeing with LIFO Policy (Explicit Free List)

Case 1

Case 2

Case 3

Case 4

Predecessor

Block

Allocated
Allocated
Free

Free

sSuccessor
Block

Allocated
Free
Allocated

Free

Change in
Nodes in
Free List

Number of
Pointers
Updated

29

