Memory Allocation I

CSE 351 Spring 2019

Instructor:

Ruth Anderson

Teaching Assistants:

Gavin Cai

Jack Eggleston

John Feltrup

Britt Henderson

Richard Jiang

Jack Skalitzky

Sophie Tian

Connie Wang

Sam Wolfson

Casey Xing

Chin Yeoh

Adapted from https://xkcd.com/1093/

WHEN WILL WE FORGET?

BASED ON US CENSUS BUREAU NATIONAL POPULATION PROJECTIONS

ASSUMING WE DON'T REMEMBER CULTURAL EVENTS FROM BEFORE AGE 5 OR 6

BY THIS YEAR:	THE MAJORITY OF AMERICANS WILL BE TOO YOUNG TO REMEMBER;
2016	RETURN OF THE JEDI RELEASE
2017	THE FIRST APPLE MACINTOSH
2018	NEW COKE
2019	CHALLENGER
2020	CHERNOBYL
2021	BLACK MONDAY
2022	THE REAGAN PRESIDENCY
2023	THE BERLIN WALL
2024	HAMMERTIME
2025	THE SOVIET UNION
2026	THE LA RIOTS
2027	LORENA BOBBITT
2028	THE FORREST GUMP RELEASE.
2029	THE RWANDAN GENOCIDE
2030	OTSIMPSON'S TRIAL
2038	ATIME BEFORE FACELSOOK
2039	VH1'S I LOVE THE 90s
2040	HURRICANE KATRINA
2041	THE PLANET PLUTO
2042	THE FIRST PHONE
2047	ANYTHING EMBARRASSING YOU DO TODAY

Administrivia

- Homework 5, due Friday (5/31)
 - Processes and Virtual Memory
- Lab 5, coming soon, due Friday (6/7)
 - Memory Allocation
 - Recommended that you watch the Lab 5 helper videos
- ❖ Final Exam: Wed, 6/12, 12:30-2:20 pm in KNE 130

Roadmap

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->qals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Memory & data Integers & floats x86 assembly Procedures & stacks Executables Arrays & structs Memory & caches **Processes** Virtual memory Memory allocation Java vs. C.

Assembly language:

```
get_mpg:
            %rbp
    pushq
            %rsp, %rbp
    movq
            %rbp
    popq
    ret
```

OS:

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```

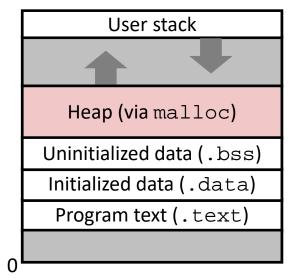

Computer system:

Multiple Ways to Store Program Data

- Static global data
 - Fixed size at compile-time
 - Entire lifetime of the program (loaded from executable)
 - Portion is read-only (e.g. string literals)
- Stack-allocated data
 - Local/temporary variables
 - Can be dynamically sized (in some versions of C)
 - Known lifetime (deallocated on return)
- Dynamic (heap) data
 - Size known only at runtime (i.e. based on user-input)
 - Lifetime known only at runtime (long-lived data structures)

```
int array[1024];

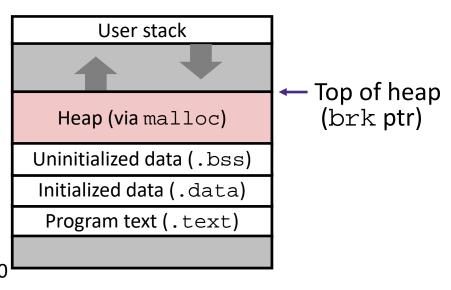
void foo(int n) {
  int tmp;
  int local_array[n];


  int* dyn =
      (int*)malloc(n*sizeof(int));
}
```

Memory Allocation

- Dynamic memory allocation
 - Introduction and goals
 - Allocation and deallocation (free)
 - Fragmentation
- Explicit allocation implementation
 - Implicit free lists
 - Explicit free lists (Lab 5)
 - Segregated free lists
- Implicit deallocation: garbage collection
- Common memory-related bugs in C

Dynamic Memory Allocation


- Programmers use dynamic memory allocators to
 - acquire virtual memory at run time
 - For data structures whose size (or lifetime) is known only at runtime
 - Manage the heap of a process' virtual memory:

- Types of allocators
 - Explicit allocator: programmer allocates and frees space
 - Example: malloc and free in C
 - Implicit allocator: programmer only allocates space (no free)
 - Example: garbage collection in Java, Caml, and Lisp

Dynamic Memory Allocation

- Allocator organizes heap as a collection of variablesized blocks, which are either allocated or free
 - Allocator requests pages in the heap region; virtual memory hardware and OS kernel allocate these pages to the process
 - Application objects are typically smaller than pages, so the allocator manages blocks within pages
 - (Larger objects handled too; ignored here)

Allocating Memory in C

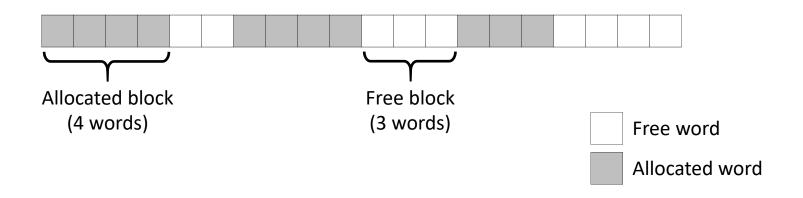
- Need to #include <stdlib.h>
- * void* malloc(size_t size)
 - Allocates a continuous block of size bytes of uninitialized memory
 - Returns a pointer to the beginning of the allocated block; <u>NULL</u> indicates failed request
 - Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
 - Returns NULL if allocation failed (also sets errno) or size==0
 - Different blocks not necessarily adjacent
- Good practices:
 - ptr = (int*) malloc(n*sizeof(int));
 - sizeof makes code more portable
 - void* is implicitly cast into any pointer type; explicit typecast will help you
 catch coding errors when pointer types don't match

Allocating Memory in C

- Need to #include <stdlib.h>
- void* malloc(size_t size)
 - Allocates a continuous block of size bytes of uninitialized memory
 - Returns a pointer to the beginning of the allocated block; NULL indicates failed request
 - Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
 - Returns NULL if allocation failed (also sets errno) or size==0
 - Different blocks not necessarily adjacent
- Related functions:
 - void* calloc(size_t nitems, size_t size)
 - "Zeros out" allocated block
 - void* realloc(void* ptr, size_t size)
 - Changes the size of a previously allocated block (if possible)
 - void* sbrk(intptr_t increment)
 - Used internally by allocators to grow or shrink the heap

Freeing Memory in C

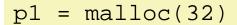
- Need to #include <stdlib.h>
- * void free (void* p) doesn't change the pointer.
 - Releases whole block pointed to by p to the pool of available memory
 - Pointer p must be the address originally returned by m/c/realloc (i.e. beginning of the block), otherwise system exception raised
 - Don't call free on a block that has already been released or on NULL


Memory Allocation Example in C

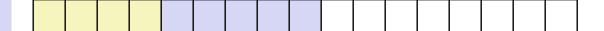
```
void foo(int n, int m) {
  int i, *p;
  p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
                                  /* check for allocation error */
  if (p == NULL) {
    perror("malloc");
    exit(0);
  for (i=0; i<n; i++)
                                      /* initialize int array */
   p[i] = ii
                               /* add space for m ints to end of p block */
  p = (int*) realloc(p,(n+m)*sizeof(int));
  if (p == NULL) {
                                       /* check for allocation error */
    perror("realloc");
    exit(0);
  for (i=n; i < n+m; i++)
                            /* initialize new spaces */
    p[i] = i;
  for (i=0; i<n+m; i++)
                                       /* print new array */
    printf("%d\n", p[i]);
                                        /* free p */
  free(p);
```

Notation

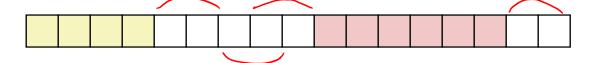
	= 1 word = 8 bytes
--	--------------------

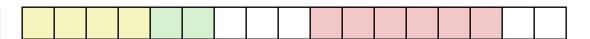

- We will draw memory divided into words
 - Each word can hold an 64 bits/8 bytes
 - Allocations will be in sizes that are a multiple of words (i.e. multiples of 8 bytes)
 - Book and old videos use 4-byte word instead of 8-byte word
 - Holdover from 32-bit version of textbook

CSE351, Spring 2019


Allocation Example

= 8-byte word


$$p2 = malloc(40)$$


$$p3 = malloc(48)$$

free(p2)

$$p4 = malloc(16)$$

Implementation Interface

Applications

- Can issue arbitrary sequence of malloc and free requests
- Must never access memory not currently allocated
- Must never free memory not currently allocated
 - Also must only use free with previously malloc'ed blocks

Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc (can't reorder or buffer)
- Must allocate blocks from free memory (blocks can't overlap)
- Must align blocks so they satisfy all alignment requirements
- Can't move the allocated blocks (defragmentation not allowed)

 would break your pointers!

Performance Goals

- * Goals: Given some sequence of malloc and free requests $R_0, R_1, ..., R_k, ..., R_{n-1}$, maximize throughput and peak memory utilization
 - These goals are often conflicting

1) Throughput

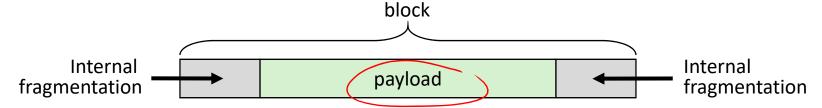
- Number of completed requests per unit time
- Example:
 - If 5,000 malloc calls and 5,000 free calls completed in 10 seconds, then throughput is 1,000 operations/second

Performance Goals

- * Definition: Aggregate payload P_k
 - malloc(p) results in a block with a payload of p bytes
 - After request R_k has completed, the aggregate payload P_k is the sum of currently allocated payloads
- \bullet <u>Definition</u>: *Current heap size* H_k
 - Assume H_k is monotonically non-decreasing
 - Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

- Defined as $U_k = (\max_{i \le k} P_i)/H_k$ after k+1 requests
- Goal: maximize utilization for a sequence of requests
- Why is this hard? And what happens to throughput?

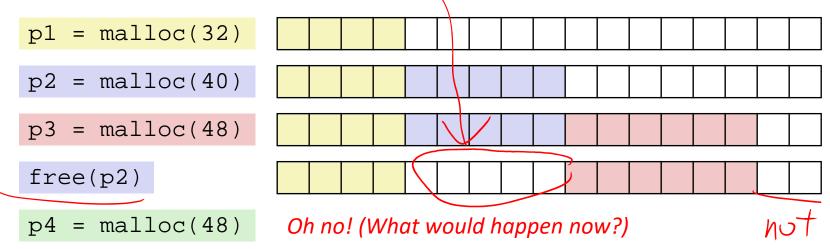

CSE351, Spring 2019

Fragmentation

- Poor memory utilization is caused by fragmentation
 - Sections of memory are not used to store anything useful, but cannot satisfy allocation requests
 - Two types: internal and external
- Recall: Fragmentation in structs
 - Internal fragmentation was wasted space inside of the struct (between fields) due to alignment
 - External fragmentation was wasted space between struct instances (e.g. in an array) due to alignment
- Now referring to wasted space in the heap inside or between allocated blocks

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than the block



Causes:

- Padding for alignment purposes
- Overhead of maintaining heap data structures (inside block, outside payload)
- Explicit policy decisions (e.g. return a big block to satisfy a small request)
- Easy to measure because only depends on past requests

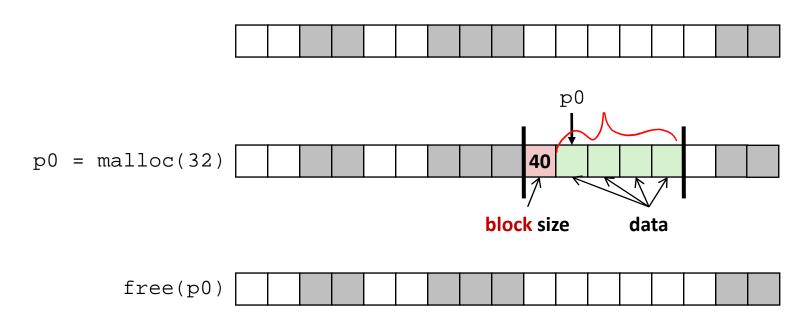
External Fragmentation

- = 8-byte word
- For the heap, external fragmentation occurs when allocation/free pattern leaves "holes" between blocks
 - That is, the aggregate payload is non-continuous
 - Can cause situations where there is enough aggregate heap memory to satisfy request, but no single free block is large enough

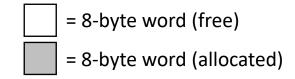
- Don't know what future requests will be
 - Difficult to impossible to know if past placements will become problematic

Peer Instruction Question

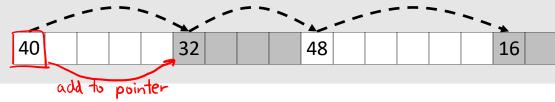
- Which of the following statements is FALSE?
 - Vote at http://pollev.com/rea
- A. Temporary arrays should not be allocated on the should allocate on the Stack
 Heap
- B. malloc returns an address filled with garbage allocates only; no initialization
- C. Peak memory utilization is a measure of both internal and external fragmentation here size
- D. An allocation failure will cause your program to stop
 - E. We're lost...


Implementation Issues

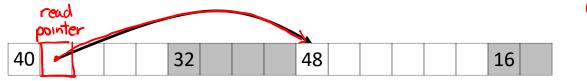
- How do we know how much memory to free given just a pointer?
- How do we keep track of the free blocks?
- * How do we pick a block to use for allocation (when many might fit)?
- What do we do with the extra space when allocating a structure that is smaller than the free block it is placed in?
- How do we reinsert a freed block into the heap?


Knowing How Much to Free

= 8-byte word (free)
= 8-byte word (allocated)

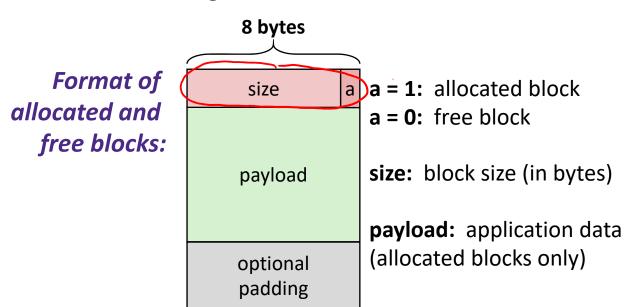

- Standard method
 - Keep the length of a block in the word preceding the block
 - This word is often called the header field or header
 - Requires an extra word for every allocated block

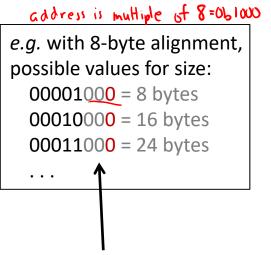
Keeping Track of Free Blocks



- 1) Implicit free list using length links all blocks using math
 - No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

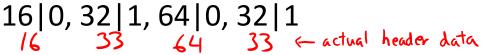

(linked list!)

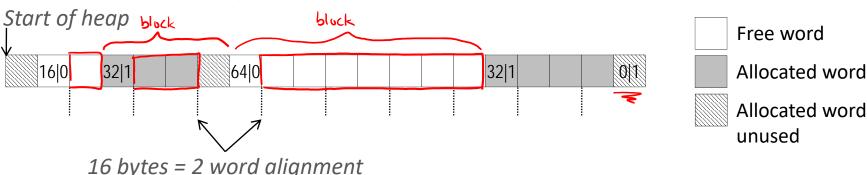


- 3) Segregated free list
 - Different free lists for different size "classes"
- 4) Blocks sorted by size
 - Can use a balanced binary tree (e.g. red-black tree) with pointers within each free block, and the length used as a key

Implicit Free Lists

- For each block we need: size, is-allocated?
 - Could store using two words, but wasteful
- Standard trick
 - If blocks are aligned, some low-order bits of size are always 0
 - Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)
 - When reading size, must remember to mask out this bit!



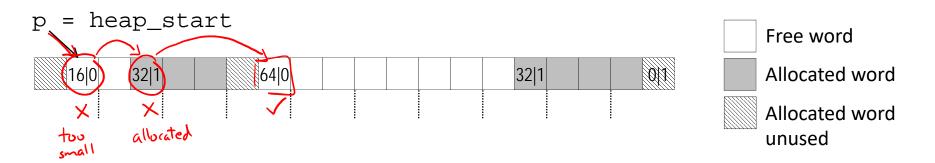


If x is first word (header):

Implicit Free List Example

- Each block begins with header (size in bytes and allocated bit)
- Sequence of blocks in heap (size|allocated):

- 16-byte alignment for payload
 - May require initial padding (internal fragmentation)
 - Note size: padding is considered part of previous block
- Special one-word marker (0|1) marks end of list
 - Zero size is distinguishable from all other blocks


Implicit List: Finding a Free Block

(*p) gets the block header (*p & 1) extracts the allocated bit (*p & -2) extracts the size

First fit

Search list from beginning, choose first free block that fits:

- Can take time linear in total number of blocks
- In practice can cause "splinters" at beginning of list

Implicit List: Finding a Free Block

Next fit

- Like first-fit, but search list starting where previous search finished
- Should often be faster than first-fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse

Best fit

- Search the list, choose the best free block: large enough AND with fewest bytes left over
- Keeps fragments small—usually helps fragmentation
- Usually worse throughput