WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

WHEN WILL WE FORGET?
. BASED ON VS (ENSUs BUREAV
Memory Allocation | NATONAL FFuLfmoN PRIECTENS
CSE 351 Spring 2019 EVENTS FROM BERORE AGE. 5 0k 6
BY THIS | THE MPJORTY OF AMERICANS
YEAR: | WILL BE TOOYONG TO REMEMBER:
Instructor: 2006 | AETRN OF e JELY RELEPSE.
207 | TE FIRST APRE MAONTSH
Ruth Anderson 208 | Newcoxe
08 | CHALLEMGER
Teaching Assistants: 2020 | CHERNOBYL
. . 221 | BAK MONDAY
Gavin Cai 2022 | THE REPGAN PRESIDENCY
Jack Eggleston 273 | THE BERUIN WAL
2024 | HAVMERTME
John Feltrup 2025 | THE SOVET UNON
Britt Henderson 20% | THE LA ROTS
Richard Jiang 2027 %f“"ﬁoﬁ‘;‘vf;
: 2028 FORREST™ RELEASE.
Jack Skalitzky 2029 | THE RuANDAN GENOCIDE
Sophie Tian 2030 | OF SIMPSON'S TRIAL
Sam Wolf 2039 | VRYs Z Lo THE Ds
am Wolrtson 2040 | HURRICANE KATRINA
Casey Xing 2041 | THE PLANET Pwro
Chin Yeoh 0z | THE FIRST {FHONE
Adapted from sou7 | ANYTHING BYIBARRASOING
https://xkcd.com/1093/ YOU DO ToDAY

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Administrivia

+» Homework 5, due Friday (5/31)

" Processes and Virtual Memory
+» Lab 5, coming soon, due Friday (6/7)
" Memory Allocation

= Recommended that you watch the Lab 5 helper videos

+» Final Exam: Wed, 6/12, 12:30-2:20 pm in KNE 130

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);

c->miles = 100; c.setMiles(100);

c->gals = 17; c.setGals(17);

float mpg = get _mpg(c); float mpg =

free(c); C.getMPG();
~S —

Assembly get_mpg:

language: pushg %rbp

movq %rsp, %rbp _
Memory allocation

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Multiple Ways to Store Program Data

+ Static global dataf—\ :
>INt array[1024];

" Fixed size at compile-time

= Entire lifetime of the program | Vold foo(int n) {

int tmp;
(loaded from executable) “Zint local_array[n];

= Portion is read-only
(e.g. string literals) Int* dyn =

(int®)malloc(n*sizeof(int));

+ Stack-allocated data }
" Local/temporary variables

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

< Dynamic (heap) data
= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

Memory Allocation

Dynamic memory allocation
" |ntroduction and goals

*

= Allocation and deallocation (free)
" Fragmentation

Explicit allocation implementation

*

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

» Implicit deallocation: garbage collection
» Common memory-related bugs in C

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Dynamic Memory Allocation

+» Programmers use dynamic memory allocators to
acquire virtual memory at run time User stack

" For data structures whose size f ‘
(or lifetime) is known only at runtime Heap (via mal loc)

| Manage the heap of a process’ Uninitialized data (. bss)

virtual memorv: Initialized data (. data)
y: Program text (. text)

+ Types of allocators

= Explicit allocator: programmer allocates and frees space
- Example: malloc and freeinC

= |mplicit allocator: programmer only allocates space (no free)
- Example: garbage collection in Java, Caml, and Lisp

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Dynamic Memory Allocation

+ Allocator organizes heap as a collection of variable-

size which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

- (Larger objects handled too; User stack
ignored here) t ‘
Top of heap
Heap (via mal loc) (brk ptr)

Uninitialized data (. bss)
Initialized data (. data)
Program text (. text)

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Allocating Memory in C

+ Needto#include <stdlib.h>
> void@ malloc(Size_t size)

= Allocates a continuous block of S1ze bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request T
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
- Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

« Good practices:
= ptr = (int*) malloc(n*sizeof(int));
- si1zeoT makes code more portable

- void¥*is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Allocating Memory in C

+ Need to#iInclude <stdlib.h>
« voild* malloc(size_t size)

= Allocates a continuous block of S1ze bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request
- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
- Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

+» Related functions:
= void* calloc(size_t nitems, size_t size)
- “Zeros out” allocated block
= void* realloc(void* ptr, size t size)
- Changes the size of a previously allocated block (if possible)
= void* sbrk{(intptr_t increment)
- Used internally by allocators to grow or shrink the heap

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Freeing Memory in C

+» Needto#i1nclude <stdlib.h>

- - doesn“l’ dr\ansc the PunJ(er.'
oo VOld free(VO|d* ﬁj— (how porls o Aeallo(ated memory)

= Releases whole hlock pointed to by p to the pool of available memory

" Pointer p must be the address originally returned by m/c/real loc
(i.e. beginning of the block), otherwise system exception raised

= Don’tcall fr/ee_gn a block that has already been released or on NULL

10

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Memory Allocation Example in C

VO
t i, *p;

= (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
(p == NULL) { /™ check for allocation error */
perror(“'malloc');

ex1t(0);

d foo(int n, Int m) {
n

m O == o

for (1=0; 1<n; i1++) /™ initialize int array */

pLi] = 1;
/™ add space for m ints to end of p block */
p = (int*) realloc(p,(n+m)*sizeof(int));

iIT (p == NULL) { /™ check for allocation error */
perror("'realloc');
exi1t(0);

+

for (i=n; 1 < n+m; 1++) /™ initialize new spaces */
pL1] = 1;

for (1=0; i<n+m; 1++) /* print new array */
printfC'%d\n", p[i]);:

w /™ freep*/

}

11

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

=1 word = 8 bytes

Notation

+» We will draw memory divided into words
= Each word can hold an 64 bits/8 bytes

" Allocations will be in sizes that are a multiple of words
(i.e. multiples of 8 bytes)

®= Book and old videos use 4-byte word instead of 8-byte word
- Holdover from 32-bit version of textbook (<)

L ¢ J
T |
Allocated block Free block
(4 words) (3 words) Free word

Allocated word

12

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

. = 8-byte word
Allocation Example
pl = malloc(32)
p2 = malloc(40)
p3 = malloc(48)
7N T 7 N
free(p2)

p4 = malloc(16)

13

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Implementation Interface

+ Applications

= Can iss sequence of mal loc and free requests

" Must never access memory not currentl ated

" Must never free memory not currently allocated
- Also must only use Free with previously mal loc’ed blocks

« Allocators

= Can’t control number or size of allocated blocks
" Must respond immediately to m‘aﬂz__@w# reoder o buctfer)

" Must allocate blocks from free memory Cblocks cant overlap)

" Must align blocks so they satisfy all alignment requirements

= Can’t move the allocated blocks (dedymestatinm nd wlgne d)
_//\

wo\,\\b \DT(’(A\(Your Po\vd'e(.)
14

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Performance Goals

+» @Goals: Given some sequence of mal loc and free
requests Ry, R4, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

) Throughpu
- er of completed requests per unit time

= Example:

- 1f 5,000 mal loc calls and 5,000 free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Performance Goals

+ Definition: Aggregate payload P,
= mal loc(p) results in a block with a payload of p bytes

= After request R; has completed, the aggregate payload P;
is the sum of currently allocated payloads

+ Definition: Current heap size H,,

= Assume Hj, is monotonically non-decreasing
- Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

= Defined as U, = (ma}(x P;)/H;, after k+1 requests
1<

" Goal: maximize utilization for a sequence of requests
= Why is this hard? And what happens to throughput?

16

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

" Two types: internal and external

+» Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

17

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

CSE351, Spring 2019

Internal Fragmentation

+» For a given block, internal fragmentation occurs if
payload is smaller than the block

block
A
| — — |
Interna Interna
fragmentation — | payload : fragmentation

+» Causes:
= Padding for alignment purposes

= QOverhead of maintaining heap data structures (inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satisfy a
small request)

+ Easy to measure because only depends on past
requests

18

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

= 8-byte word

External Fragmentation

+ For the hea curswhen
allocation/free pa petween blocks
—

pl = malloc(32)

p2 = malloc(40)

p3 = malloc(48) \/
— —
free(p2) \ P!
k/ u
p4 = malloc(48) Oh no! (What would happen now?) V\O‘IL

+» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become

problematic
19

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Peer Instruction Question

+» Which of the following statements’is FALSE?

= \/ote at http://pollev.com/rea

_—A. Temporary arrays should not be allocated on the
should alloccde on The Stack

| Heap ot s Leck thyt is
T B. mal loc returns an addressﬁilled with garbage

alloctes only; no indialization

_—~<"C. Peak memory utilization is a measure of both
\ . . aggregiie poyload
internal and external fragmentation — =

D. An allocation failure will cause your program to
StOp Jus‘f returns NULL

E. We're lost...

20

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Implementation Issues

+» How do we know how much memory to free given
just a pointer?

+» How do we keep track of the free blocks?

+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

21

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the block
- This word is often called the header field or header

= Requires an extra word for every allocated block

pO

AN
pO = malloc(32) 40
Y

block size data

free(pO)

22

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

= 8-byte word (free)

Keeping Track of Free Blocks _ &-byte word (allocated)

1) Implicit free list using length — links all blocks using @)

= No actual pointers, and must check each block if allocated or free

— — iy 1 -
- S P ~ o - =~

= ' O
40 32 48 16

—
——l

add pbin‘*eif
2) Explicit free list among only the free blocks, using pointers

read (linked \(s\'!)
pom‘\‘cr
40 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019
Gddreys s M\A\'\\p\e b+ $ =0\, 1000

o« o o e.g. with 8-byte alignment,

|mp|ICIt Free LIStS possible values for size:
00001000 = 8 bytes

_ 00010000 = 16 bytes

+ For each block we need: si1ze, is-allocated? | 00011000 =24 bytes

= Could store using two words, but wasteful - 4

+ Standard trick
= |f blocks are aligned, some low-order bits of S1ze are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading S1ze, must remember to mask out this bit!

8 bytes
——
Format of <; size aa = 1: allocated block If X is first word (header):
allocated and a=0: free block ot
free blocks: X = size | a;
payload size: block size (in bytes)
a =X & 1;
payload: application data
optional (allocated blocks only) size = X & ~1;
padding K

24

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Implicit Free List Example

+ Each block begins with header (size in bytes and allocated bit)

+» Sequence of blocks in heap (s1ze|al located):
16|0 32|1, 64|O 32|1

33 « actual heder Acta
Start of heap ik block.

Free word

Allocated word

3211

3211

llocated word
unused

16 bytes = 2 word alignment

+ 16-byte alignment for payload
= May require initial padding (internal fragmentation)
= Note Size: padding is considered part of previous block

D)

» Special one-word marker (0| 1) marks end of list

= Zero Size is distinguishable from all other blocks
25

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

(*p) gets the block
header

Implicit List: Finding a Free Block | ¢oeexracts the

al located bit

. . (*p & -2) extracts
& FII'Stht the size

= Search list from beginning, choose first free block that fits:

p = heap_start;
while ((p < end) && // not past end
(Cp & 1) |1 // already allocated
(*p <= len))) { // too small equivalot to pointer arthneli{ witl,
p=p+ Cp & -2); // go to next block (UNSCALED +) chgr™
} // p points to selected block or end
fher—Is e
O(n) T

= Can take time linear in total number of blocks
" |n practice can cause “splinters” at beginning of list

p = heap start _
NN Free word

}6|d) ‘\62& 321 Allocated word
X K Allocated word
4o alocdted unused

26

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Spring 2019

Implicit List: Finding a Free Block

+» Next fit

= |ike first-fit, but search list starting where previous search
finished

= Should often be faster than first-fit: avoids re-scanning
unhelpful blocks

= Some research suggests that fragmentation is worse
+ Best fit

= Search the list, choose the best free block: large enough
AND with fewest bytes left over

= Keeps fragments small—usually helps fragmentation
= Usually worse throughput

27

