Virtual Memory III
CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:
Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

Pay no attention to that man behind the curtain!
Administrivia

- Lab 4, due Fri (5/24)
- Homework 5 is out!
 - Processes and Virtual Memory
 - Due Friday, May 31
- Error on last week’s section handout
 - Incorrect variable names for caches
Address Translation: Page Hit

1) Processor sends *virtual* address to MMU (*memory management unit*)

2-3) MMU fetches PTE from page table in cache/memory
 (Uses PTBR to find beginning of page table for current process)

4) MMU sends *physical* address to cache/memory requesting data

5) Cache/memory sends data to processor

<table>
<thead>
<tr>
<th>VA</th>
<th>PTEA</th>
<th>PTE</th>
<th>PA</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>VA</td>
<td>PTEA</td>
<td>PTE</td>
<td>PA</td>
<td>Data</td>
</tr>
</tbody>
</table>

- **VA** = Virtual Address
- **PTEA** = Page Table Entry Address
- **PTE** = Page Table Entry
- **PA** = Physical Address
- **Data** = Contents of memory stored at VA originally requested by CPU
Address Translation: Page Fault

1) Processor sends virtual address to MMU
2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction
Hmm... Translation Sounds Slow

- The MMU accesses memory *twice*: once to get the PTE for translation, and then again for the actual memory request
 - The PTEs *may* be cached in L1 like any other memory word
 - But they may be evicted by other data references
 - And a hit in the L1 cache still requires 1-3 cycles

- *What can we do to make this faster?*
 - “Any problem in computer science can be solved by adding another level of *indirection.*” – *David Wheeler, inventor of the subroutine*
 - “And all of the new problems *that* creates can be solved by adding another *cache.*” – *Sam Wolfson, inventor of this quote*
Speeding up Translation with a TLB

Translation Lookaside Buffer (TLB):

- Small hardware cache in MMU
- Maps virtual page numbers to physical page numbers
- Contains complete page table entries for small number of pages
 - Modern Intel processors have 128 or 256 entries in TLB
- Much faster than a page table lookup in cache/memory
A TLB hit eliminates a memory access!
TLB Miss

- A TLB miss incurs an additional memory access (the PTE)
 - Fortunately, TLB misses are rare
Fetching Data on a Memory Read

1) Check TLB
 - **Input**: VPN, **Output**: PPN
 - **TLB Hit**: Fetch translation, return PPN
 - **TLB Miss**: Check page table (in memory)
 - **Page Table Hit**: Load page table entry into TLB
 - **Page Fault**: Fetch page from disk to memory, update corresponding page table entry, then load entry into TLB

2) Check cache
 - **Input**: physical address, **Output**: data
 - **Cache Hit**: Return data value to processor
 - **Cache Miss**: Fetch data value from memory, store it in cache, return it to processor
Address Translation

- VM is complicated, but also elegant and effective
 - Level of indirection to provide isolated memory & caching
 - TLB as a cache of page tables avoids two trips to memory for every memory access
Simple Memory System Example (small)

- Addressing
 - 14-bit virtual addresses
 - 12-bit physical address
 - Page size = 64 bytes
Simple Memory System: Page Table

- Only showing first 16 entries (out of _____)
 - **Note:** showing 2 hex digits for PPN even though only 6 bits
 - **Note:** other management bits not shown, but part of PTE

<table>
<thead>
<tr>
<th>VPN</th>
<th>PPN</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VPN</th>
<th>PPN</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>09</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>2D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0D</td>
<td>1</td>
</tr>
</tbody>
</table>
Simple Memory System: TLB

- **16 entries total**
- **4-way set associative**

Why does the TLB ignore the page offset?

Set

<table>
<thead>
<tr>
<th>Set</th>
<th>Tag</th>
<th>PPN</th>
<th>Valid</th>
<th>Tag</th>
<th>PPN</th>
<th>Valid</th>
<th>Tag</th>
<th>PPN</th>
<th>Valid</th>
<th>Tag</th>
<th>PPN</th>
<th>Valid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>03</td>
<td>–</td>
<td>0</td>
<td>09</td>
<td>0D</td>
<td>1</td>
<td>00</td>
<td>–</td>
<td>0</td>
<td>07</td>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>03</td>
<td>2D</td>
<td>1</td>
<td>02</td>
<td>–</td>
<td>0</td>
<td>04</td>
<td>–</td>
<td>0</td>
<td>0A</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>–</td>
<td>0</td>
<td>08</td>
<td>–</td>
<td>0</td>
<td>06</td>
<td>–</td>
<td>0</td>
<td>03</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>07</td>
<td>–</td>
<td>0</td>
<td>03</td>
<td>0D</td>
<td>1</td>
<td>0A</td>
<td>34</td>
<td>1</td>
<td>02</td>
<td>–</td>
<td>0</td>
</tr>
</tbody>
</table>
Simple Memory System: Cache

- Direct-mapped with $K = 4$ B, $C/K = 16$
- Physically addressed

Note: It is just coincidence that the PPN is the same width as the cache Tag
Current State of Memory System

TLB:

<table>
<thead>
<tr>
<th>Set</th>
<th>Tag</th>
<th>PPN</th>
<th>V</th>
<th>Tag</th>
<th>PPN</th>
<th>V</th>
<th>Tag</th>
<th>PPN</th>
<th>V</th>
<th>Tag</th>
<th>PPN</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>03</td>
<td>–</td>
<td>0</td>
<td>09</td>
<td>OD</td>
<td>1</td>
<td>00</td>
<td>–</td>
<td>0</td>
<td>07</td>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>03</td>
<td>2D</td>
<td>1</td>
<td>02</td>
<td>–</td>
<td>0</td>
<td>04</td>
<td>–</td>
<td>0</td>
<td>0A</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>02</td>
<td>–</td>
<td>0</td>
<td>08</td>
<td>–</td>
<td>0</td>
<td>06</td>
<td>–</td>
<td>0</td>
<td>03</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>07</td>
<td>–</td>
<td>0</td>
<td>03</td>
<td>0D</td>
<td>1</td>
<td>0A</td>
<td>34</td>
<td>1</td>
<td>02</td>
<td>–</td>
<td>0</td>
</tr>
</tbody>
</table>

Page table (partial):

<table>
<thead>
<tr>
<th>VPN</th>
<th>PPN</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>28</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>02</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>09</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>2D</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>0D</td>
<td>1</td>
</tr>
</tbody>
</table>

Cache:

<table>
<thead>
<tr>
<th>Index</th>
<th>Tag</th>
<th>V</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19</td>
<td>1</td>
<td>99</td>
<td>11</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>2</td>
<td>1B</td>
<td>1</td>
<td>00</td>
<td>02</td>
<td>04</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>32</td>
<td>1</td>
<td>43</td>
<td>6D</td>
<td>8F</td>
<td>09</td>
</tr>
<tr>
<td>5</td>
<td>0D</td>
<td>1</td>
<td>36</td>
<td>72</td>
<td>F0</td>
<td>1D</td>
</tr>
<tr>
<td>6</td>
<td>31</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>1</td>
<td>11</td>
<td>C2</td>
<td>DF</td>
<td>03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Tag</th>
<th>V</th>
<th>B0</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>24</td>
<td>1</td>
<td>3A</td>
<td>00</td>
<td>51</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>2D</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>A</td>
<td>2D</td>
<td>1</td>
<td>93</td>
<td>15</td>
<td>DA</td>
<td>3B</td>
</tr>
<tr>
<td>B</td>
<td>0B</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>1</td>
<td>04</td>
<td>96</td>
<td>34</td>
<td>15</td>
</tr>
<tr>
<td>E</td>
<td>13</td>
<td>1</td>
<td>83</td>
<td>77</td>
<td>1B</td>
<td>D3</td>
</tr>
<tr>
<td>F</td>
<td>14</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Memory Request Example #1

- **Virtual Address:** $0x03D4$

![Virtual Address Diagram]

- **Physical Address:**

![Physical Address Diagram]

Note: It is just coincidence that the PPN is the same width as the cache Tag.
Memory Request Example #2

- **Virtual Address:** 0x038F

 - **VPN:** 00011100011111
 - **VPO:** 1111111111

 - **TLBT:** 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 - **TLBI:** 0 0 0 0 1 1 1 0 0 0 1 1 1 1

- **Physical Address:**

 - **CT:** 11 10 9 8 7 6 5 4 3 2 1 0
 - **Cl:**
 - **CO:**

 - **PPN:**
 - **PPO:**

 - **Cache Hit?**
 - **Data (byte):**

Note: It is just coincidence that the PPN is the same width as the cache Tag
Memory Request Example #3

- **Virtual Address:** 0x0020

![Virtual Address Diagram](image)

- **Physical Address:**

![Physical Address Diagram](image)

Note: It is just coincidence that the PPN is the same width as the cache Tag.
Memory Request Example #4

- **Virtual Address**: 0x036B

 - VPN: ______
 - TLBT: ______
 - TLBI: ______
 - TLB Hit? ___
 - Page Fault? ___
 - PPN: _____

- **Physical Address**:

 - CT: ______
 - CI: _____
 - CO: _____
 - Cache Hit? ___
 - Data (byte) ______
Memory Overview

- `movl 0x8043ab, %rdi`

Disk

Page

Main memory (DRAM)

Page

Block

Line

requested 32-bits

CPU

MMU

TLB
Page Table Reality

- Just one issue... the numbers don’t work out for the story so far!

- The problem is the page table for each process:
 - Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory
 - How many page table entries is that?
 - About how long is each PTE?

- **Moral:** Cannot use this naïve implementation of the virtual→physical page mapping – it’s way too big
A Solution: Multi-level Page Tables

This is called a *page walk*

This is extra (non-testable) material
Multi-level Page Tables

- A tree of depth k where each node at depth i has up to 2^j children if part i of the VPN has j bits
- Hardware for multi-level page tables inherently more complicated
 - But it’s a necessary complexity – 1-level does not fit
- Why it works: Most subtrees are not used at all, so they are never created and definitely aren’t in physical memory
 - Parts created can be evicted from cache/memory when not being used
 - Each node can have a size of ~1-100KB
- But now for a k-level page table, a TLB miss requires $k + 1$ cache/memory accesses
 - Fine so long as TLB misses are rare – motivates larger TLBs

This is extra (non-testable) material
Practice VM Question

- Our system has the following properties
 - 1 MiB of physical address space
 - 4 GiB of virtual address space
 - 32 KiB page size
 - 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:

<table>
<thead>
<tr>
<th>Entries in a page table</th>
<th>Minimum bit-width of page table base register (PTBR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TLBT bits</th>
<th>Max # of valid entries in a page table</th>
</tr>
</thead>
<tbody>
<tr>
<td>__________</td>
<td>__________</td>
</tr>
</tbody>
</table>
Practice VM Question

- One process uses a page-aligned 2048×2048 square matrix `mat[]` of 32-bit integers in the code shown below:

  ```c
  #define MAT_SIZE = 2048
  for (int i = 0; i < MAT_SIZE; i++)
    mat[i*(MAT_SIZE+1)] = i;
  ```

- **b)** What is the largest stride (in bytes) between successive memory accesses (in the VA space)?
Practice VM Question

One process uses a page-aligned 2048×2048 square matrix $\text{mat}[]$ of 32-bit integers in the code shown below:

```c
#define MAT_SIZE = 2048
for (int i = 0; i < MAT_SIZE; i++)
    mat[i*(MAT_SIZE+1)] = i;
```

c) Assuming all of $\text{mat}[]$ starts on disk, what are the following hit rates for the execution of the for-loop?

<table>
<thead>
<tr>
<th>TLB Hit Rate</th>
<th>Page Table Hit Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>____________</td>
<td>_________________</td>
</tr>
</tbody>
</table>
For Fun: DRAMMER Security Attack

- Why are we talking about this?
 - **Recent(ish):** Announced in October 2016; Google released Android patch on November 8, 2016
 - **Relevant:** Uses your system’s memory setup to gain elevated privileges
 - Ties together some of what we’ve learned about virtual memory and processes
 - **Interesting:** It’s a software attack that uses *only hardware vulnerabilities* and requires *no user permissions*
Underlying Vulnerability: Row Hammer

- Dynamic RAM (DRAM) has gotten denser over time
 - DRAM cells physically closer and use smaller charges
 - More susceptible to “disturbance errors” (interference)

- DRAM capacitors need to be “refreshed” periodically (~64 ms)
 - Lose data when loss of power
 - Capacitors accessed in rows

- Rapid accesses to one row can flip bits in an adjacent row!
 - ~ 100K to 1M times

By Dsimic (modified), CC BY-SA 4.0, https://commons.wikimedia.org/wiki/index.php?curid=38868341
Row Hammer Exploit

- Force constant memory access
 - Read then flush the cache
 - `clflush` – flush cache line
 - Invalidates cache line containing the specified address
 - Not available in all machines or environments
 - Want addresses X and Y to fall in activation target row(s)
 - Good to understand how banks of DRAM cells are laid out

- The row hammer effect was discovered in 2014
 - Only works on certain types of DRAM (2010 onwards)
 - These techniques target x86 machines

\[
\text{hammertime:}
\begin{align*}
\text{mov} & \quad (X), \quad %eax \\
\text{mov} & \quad (Y), \quad %ebx \\
\text{clflush} & \quad (X) \\
\text{clflush} & \quad (Y) \\
\text{jmp} & \quad \text{hammertime}
\end{align*}
\]
Consequences of Row Hammer

- Row hammering process can affect another process via memory
 - Circumvents virtual memory protection scheme
 - Memory needs to be in an adjacent row of DRAM

- Worse: privilege escalation
 - Page tables live in memory!
 - Hope to change PPN to access other parts of memory, or change permission bits
 - **Goal**: gain read/write access to a page containing a page table, hence granting process read/write access to *all of physical memory*
Effectiveness?

- Doesn’t seem so bad – random bit flip in a row of physical memory
 - Vulnerability affected by system setup and physical condition of memory cells

- **Improvements:**
 - Double-sided row hammering increases speed & chance
 - Do system identification first (e.g. Lab 4)
 - Use timing to infer memory row layout & find “bad” rows
 - Allocate a huge chunk of memory and try many addresses, looking for a reliable/repeatable bit flip
 - Fill up memory with page tables first
 - fork extra processes; hope to elevate privileges in any page table
What’s DRAMMER?

- No one previously made a huge fuss
 - **Prevention**: error-correcting codes, target row refresh, higher DRAM refresh rates
 - Often relied on special memory management features
 - Often crashed system instead of gaining control

- Research group found a *deterministic* way to induce row hammer exploit in a non-x86 system (ARM)
 - Relies on predictable reuse patterns of standard physical memory allocators
 - Universiteit Amsterdam, Graz University of Technology, and University of California, Santa Barbara
DRAMMER Demo Video

- It’s a shell, so not that sexy-looking, but still interesting
 - Apologies that the text is so small on the video
How did we get here?

- Computing industry demands more and faster storage with lower power consumption
- Ability of user to circumvent the caching system
 - `clflush` is an unprivileged instruction in x86
 - Other commands exist that skip the cache
- Availability of virtual to physical address mapping
 - **Example:** `/proc/self/pagemap` on Linux (not human-readable)
- Google patch for Android (Nov. 8, 2016)
 - Patched the ION memory allocator
More reading for those interested

- DRAMMER paper:
- Google Project Zero:
 https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
- First row hammer paper:
- Wikipedia:
 https://en.wikipedia.org/wiki/Rowhammer