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Administrivia
v Lab 4, due Fri (5/24)

v Homework 5 is out!
§ Processes and Virtual Memory

§ Due Friday, May 31

v Error on last week’s section handout
§ Incorrect variable names for caches
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Address Translation:  Page Hit

4

1) Processor sends virtual address to MMU (memory management unit)

2-3)  MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip PTEA

PTE1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry 
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU 
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Address Translation:  Page Fault

5

1) Processor sends virtual address to MMU 
2-3) MMU fetches PTE from page table in cache/memory
4) Valid bit is zero, so MMU triggers page fault exception
5) Handler identifies victim (and, if dirty, pages it out to disk)
6) Handler pages in new page and updates PTE in memory
7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU VA

CPU Chip PTEA

PTE
1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6
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Hmm… Translation Sounds Slow
v The MMU accesses memory twice: once to get the 

PTE for translation, and then again for the actual 
memory request
§ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references
• And a hit in the L1 cache still requires 1-3 cycles

v What can we do to make this faster?
§ “Any problem in computer science can be solved by adding another level 

of indirection.” – David Wheeler, inventor of the subroutine

§ “And all of the new problems that creates can be solved by adding 
another cache.” - Sam Wolfson, inventor of this quote
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Speeding up Translation with a TLB
v Translation Lookaside Buffer (TLB):

§ Small hardware cache in MMU
§ Maps virtual page numbers to physical page numbers
§ Contains complete page table entries for small number of 

pages
• Modern Intel processors have 128 or 256 entries in TLB

§ Much faster than a page table lookup in cache/memory

7

TLB

PTEVPN →

PTEVPN →

PTEVPN →
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TLB Hit

v A TLB hit eliminates a memory access!

8

MMU Cache/
Memory

PA

Data

CPU VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB
PTEVPN →

PTEVPN →

PTEVPN →
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TLB Miss

v A TLB miss incurs an additional memory access (the PTE)
§ Fortunately, TLB misses are rare
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MMU Cache/
MemoryPA

Data

CPU VA

CPU Chip

PTE
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TLB
PTEVPN →

PTEVPN →
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Fetching Data on a Memory Read
1) Check TLB

§ Input:  VPN,  Output:  PPN
§ TLB Hit: Fetch translation, return PPN
§ TLB Miss: Check page table (in memory)

• Page Table Hit: Load page table entry into TLB
• Page Fault: Fetch page from disk to memory, update 

corresponding page table entry, then load entry into TLB

2) Check cache
§ Input:  physical address,  Output:  data
§ Cache Hit: Return data value to processor
§ Cache Miss: Fetch data value from memory, store it in 

cache, return it to processor
10
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Address Translation
v VM is complicated, but also elegant and effective

§ Level of indirection to provide isolated memory & caching
§ TLB as a cache of page tables

avoids two trips to memory 
for every memory access

11

Virtual Address

TLB
Lookup

Check the
Page Table

Update 
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access 
Permitted

Protection
Fault

SIGSEGV

Page 
in Mem

Check cacheFind in Disk Find in Mem
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Simple Memory System Example (small)
v Addressing

§ 14-bit virtual addresses
§ 12-bit physical address
§ Page size = 64 bytes

12

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN
Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN
Physical Page Number Physical Page Offset

2
"

virtual adders
.

2
"

physical
adders

.

logit
= G bit page

offset

14 - G = 8 bits

12 - G = G bits



CSE351, Spring 2019L23:  Virtual Memory III

Simple Memory System:  Page Table
v Only showing first 16 entries (out of _____)

§ Note:  showing 2 hex digits for PPN even though only 6 bits
§ Note: other management bits not shown, but part of PTE

13

VPN PPN Valid
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN Valid
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1

ZIVA
 size ) - CUPO  size ) ( VPN size )

= 2

28
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Simple Memory System:  TLB
v 16 entries total
v 4-way set associative

14

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073
0–030–060–080–022
0–0A0–040–0212D031
102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the 
TLB ignore the 
page offset?

V Po and PPO are

the same thing ,
So

no
translation needed

O O O O I I 0 I

-

example
: VPN :

010
,

TLBT : 3
,

TIBI: I
,

PPN : 0×2 D

0 O
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Simple Memory System:  Cache
v Direct-mapped with K = 4 B, C/K = 16
v Physically addressed

15

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

Index Tag Valid B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 – – – –
2 1B 1 00 02 04 08
3 36 0 – – – –
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 – – – –
7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 – – – –
A 2D 1 93 15 DA 3B
B 0B 0 – – – –
C 12 0 – – – –
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 – – – –



CSE351, Spring 2019L23:  Virtual Memory III

Current State of Memory System

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3
0 19 1 99 11 23 11
1 15 0 – – – –
2 1B 1 00 02 04 08
3 36 0 – – – –
4 32 1 43 6D 8F 09
5 0D 1 36 72 F0 1D
6 31 0 – – – –
7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3
8 24 1 3A 00 51 89
9 2D 0 – – – –
A 2D 1 93 15 DA 3B
B 0B 0 – – – –
C 12 0 – – – –
D 16 1 04 96 34 15
E 13 1 83 77 1B D3
F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V
0 03 – 0 09 0D 1 00 – 0 07 02 1
1 03 2D 1 02 – 0 04 – 0 0A – 0
2 02 – 0 08 – 0 06 – 0 03 – 0
3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1
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Memory Request Example #1
v Virtual Address:  0x03D4

v Physical Address:  

17

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

1
7

1
6

0
5

1
4

0
3

1
2

0
1

0
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

OXF 3 3 Y

)
N OD

-
O O I I O I O I O I O O

OXD 5 O y 0×36
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Memory Request Example #2
v Virtual Address:  0x038F

v Physical Address:  

18

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

1
7

0
6

0
5

0
4

1
3

1
2

1
1

1
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

ONE 3 2 N y TITI
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Memory Request Example #3
v Virtual Address:  0x0020

v Physical Address:  

19

TLBITLBT

0
13

0
12

0
11

0
10

0
9

0
8

0
7

0
6

1
5

0
4

0
3

0
2

0
1

0
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

O O 0 N N 0×28

I 0 I O O O I O O O O O

0×28 8 O N
- WIT
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Memory Request Example #4
v Virtual Address:  0x036B

v Physical Address:  

20

TLBITLBT

0
13

0
12

0
11

0
10

1
9

1
8

0
7

1
6

1
5

0
4

1
3

0
2

1
1

1
0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

QD 0×3 I Y N 0x2D

I O I I O l I O I O I I

0×20 OXA 3 Y 0x3B
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Memory Overview

21

Disk

Main memory
(DRAM)

CacheCPU

Page

Page
Line

Block

requested 32-bits

v movl 0x8043ab, %rdi

TLB

MMU

page
out

request --data e%c9.in

&
in

cache

miss
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Page Table Reality
v Just one issue… the numbers don’t work out for the 

story so far!

v The problem is the page table for each process:
§ Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory
§ How many page table entries is that? 

§ About how long is each PTE?

§ Moral: Cannot use this naïve implementation of the 
virtual→physical page mapping – it’s way too big

22

This is extra 
(non-testable) 

material

M - 64 bits
p

- 13 bits Ms 33 bits

I entry per virtual page
:

2
n - P

=z5ieni3gI2p/ -

PPN width ( m -

p
= 20 bits t management bits = 23 bits I 3 bytes

( R
,

w
,

X
,

etc )
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A Solution:  Multi-level Page Tables

23

Page table 
base register

(PTBR)

VPN 1
0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1
PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This is called a page walk

This is extra 
(non-testable) 

material

At:a
o

.

exam pre
: gp:¥tYffP%9,maned . go!?o

!

!
"

↳ o

PX can avoid allocating
most of this tree

for addresses that

programs
don't

actually use

airrays
ofpointers T

- "
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Multi-level Page Tables
v A tree of depth ! where each node at depth " has up to 2$

children if part " of the VPN has % bits

v Hardware for multi-level page tables inherently more 
complicated
§ But it’s a necessary complexity – 1-level does not fit

v Why it works: Most subtrees are not used at all, so they are 
never created and definitely aren’t in physical memory
§ Parts created can be evicted from cache/memory when not being used

§ Each node can have a size of ~1-100KB

v But now for a !-level page table, a TLB miss requires ! + 1
cache/memory accesses
§ Fine so long as TLB misses are rare – motivates larger TLBs

24

This is extra 
(non-testable) 

material
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Practice VM Question
v Our system has the following properties

§ 1 MiB of physical address space
§ 4 GiB of virtual address space
§ 32 KiB page size
§ 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:

25

________ Entries in a page table ________ Minimum bit-width of 
page table base register 
(PTBR)

________ TLBT bits ________ Max # of valid entries in 
a page table

M = 20 bits

n
- 32 bits

p
= 15 bits

-
I set

14
2 20

z
n

- p

← physical address

If 25

VPN = TLBT t TIBI
,

z
m - p # of pages

in

1 set so TLBI = O
phys.

men
.
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Practice VM Question
v One process uses a page-aligned 2048 × 2048 square matrix 
mat[] of 32-bit integers in the code shown below:

#define MAT_SIZE = 2048
for(int i = 0; i < MAT_SIZE; i++)
mat[i*(MAT_SIZE+1)] = i;

b) What is the largest stride (in bytes) between successive 
memory accesses (in the VA space)?

26

start adder
.

of mat at page
offset O

-

updating
←

dragon as

÷p÷::ssm
s:÷÷÷.a?2*27

a

face!
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Practice VM Question
v One process uses a page-aligned 2048 × 2048 square matrix 
mat[] of 32-bit integers in the code shown below:

#define MAT_SIZE = 2048
for(int i = 0; i < MAT_SIZE; i++)
mat[i*(MAT_SIZE+1)] = i;

c) Assuming all of mat[] starts on disk, what are the following 
hit rates for the execution of the for-loop?

27

________ TLB Hit Rate ________ Page Table Hit Rate

page sizes 32 KiB s 2
' 5

B

2
"

ints = 213 B

O

%access pattern : Smg
rewrite to  index

, PT only
accessed on TLB miss

,

never revisited
,

access

each now exactly once
because mat starts on dis re each

first access to a page
is a page

each page
holds 215/213 = 4 rows of matrix fan , ¢

.

each page
: m is it
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For Fun:  DRAMMER Security Attack
v Why are we talking about this?

§ Recent(ish): Announced in October 2016; Google released 
Android patch on November 8, 2016

§ Relevant: Uses your system’s memory setup to gain 
elevated privileges
• Ties together some of what we’ve learned about virtual memory and 

processes

§ Interesting: It’s a software attack that uses only hardware 
vulnerabilities and requires no user permissions

28
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Underlying Vulnerability:  Row Hammer
v Dynamic RAM (DRAM) has gotten denser over time

§ DRAM cells physically closer and 
use smaller charges

§ More susceptible to “disturbance
errors” (interference)

v DRAM capacitors need to be 
“refreshed” periodically (~64 ms)
§ Lose data when loss of power

§ Capacitors accessed in rows

v Rapid accesses to one row can
flip bits in an adjacent row!
§ ~ 100K to 1M times 29

By Dsimic (modified), CC BY-SA 4.0, 
https://commons.wikimedia.org/w

/index.php?curid=38868341



CSE351, Spring 2019L23:  Virtual Memory III

Row Hammer Exploit
v Force constant memory access

§ Read then flush the cache 
§ clflush – flush cache line

• Invalidates cache line containing the 
specified address

• Not available in all machines or 
environments

§ Want addresses X and Y to fall in activation target row(s)
• Good to understand how banks of DRAM cells are laid out

v The row hammer effect was discovered in 2014 
§ Only works on certain types of DRAM (2010 onwards)
§ These techniques target x86 machines

30

hammertime: 
mov (X), %eax
mov (Y), %ebx
clflush (X) 
clflush (Y) 
jmp hammertime
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Consequences of Row Hammer
v Row hammering process can affect another process 

via memory
§ Circumvents virtual memory protection scheme
§ Memory needs to be in an adjacent row of DRAM

v Worse:  privilege escalation
§ Page tables live in memory!
§ Hope to change PPN to access other parts of memory, or 

change permission bits
§ Goal: gain read/write access to a page containing a page 

table, hence granting process read/write access to all of 
physical memory

31
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Effectiveness?
v Doesn’t seem so bad – random bit flip in a row of 

physical memory
§ Vulnerability affected by system setup and physical 

condition of memory cells

v Improvements:
§ Double-sided row hammering increases speed & chance
§ Do system identification first  (e.g. Lab 4)

• Use timing to infer memory row layout & find “bad” rows
• Allocate a huge chunk of memory and try many addresses, looking for 

a reliable/repeatable bit flip

§ Fill up memory with page tables first
• fork extra processes; hope to elevate privileges in any page table

32
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What’s DRAMMER?
v No one previously made a huge fuss

§ Prevention: error-correcting codes, target row refresh, 
higher DRAM refresh rates

§ Often relied on special memory management features
§ Often crashed system instead of gaining control

v Research group found a deterministic way to induce 
row hammer exploit in a non-x86 system (ARM)
§ Relies on predictable reuse patterns of standard physical 

memory allocators
§ Universiteit Amsterdam, Graz University of Technology, and

University of California, Santa Barbara
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DRAMMER Demo Video 
v It’s a shell, so not that sexy-looking, but still interesting

§ Apologies that the text is so small on the video
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How did we get here?
v Computing industry demands more and faster storage 

with lower power consumption
v Ability of user to circumvent the caching system

§ clflush is an unprivileged instruction in x86
§ Other commands exist that skip the cache

v Availability of virtual to physical address mapping
§ Example: /proc/self/pagemap on Linux 

(not human-readable)

v Google patch for Android (Nov. 8, 2016)
§ Patched the ION memory allocator

35
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More reading for those interested
v DRAMMER paper:  

https://vvdveen.com/publications/drammer.pdf

v Google Project Zero:  

https://googleprojectzero.blogspot.com/2015/03/exp

loiting-dram-rowhammer-bug-to-gain.html

v First row hammer paper:  

https://users.ece.cmu.edu/~yoonguk/papers/kim-

isca14.pdf

v Wikipedia:  

https://en.wikipedia.org/wiki/Row_hammer
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