YA UNIVERSITY of WASHINGTON

Virtual Memory |
CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

Gavin Cai

Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

L21: Virtual Memory | CSE351, Spring 2019

Well I'm having trouble opening g
new tabs. And the others are o : Hmm. Well |
having problems too. The IDE, o guess it would be
Skype, everyone really... A & hice to boost the
' 0N IDEabit... £

http://rebrn.com/re/bad-chrome-1162082/

2 OK, here's an extra 4 gigs,

[Make sure you share it around,
\ there aren’t any more slots left

So? What did he say? Will he
give us some more RAM?

He told wou
to get lost

CommitStrip.com

http://rebrn.com/re/bad-chrome-1162082/

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Administrivia

+» Homework 4 , due Wed (5/22) (Structs, Caches)
+ Lab 4, due Fri (5/24)

YW UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Processes

+ Processes and context switching
+ Creating new processes
" fork(),exec* (),andwait ()

« Zombies

CSE351, Spring 2019

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Zombies

+ A terminated process still consumes system resources
= Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+~ Reaping is performed by parent on terminated child

" Parent is given exit status information and kernel then
deletes zombie child process

+» What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid == 1)
- Note: on recent Linux systems, init has been renamed systemd

" |n long-running processes (e.g. shells, servers) we need
explicit reaping

YA UNIVERSITY of WASHINGTON L21: Virtual Memory |

CSE351, Spring 2019

wait: Synchronizing with Children

+ int wait (int *child status)

= Suspends current process (i.e. the parent) until one of its
children terminates

= Return value is the PID of the child process that terminated
« On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status
value indicates why the child process terminated

- Special macros for interpreting this status — see man wait (2)

+ Note: If parent process has multiple children, wait
will return when any of the children terminates
" waitpid can be used to wait on a specific child process

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

wait: Synchronizing with Children

void fork wait () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {

printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;

} forks.c
HC exit
>0— >
printf 7 Feasible output: Infeasible output:
HC HP
CT HP CT
Hp Bye CT Bye

— >0 >6— >0
fork printf wait printf Bye HC

YW UNIVERSITY of WASHINGTON

L21: Virtual Memory |

CSE351, Spring 2019

void fork7 ()
if

Example: Zombie

linux> ./forks 7 &
[1] 6639
Running Parent, PID

while

6639

(fork ()
/* Child */

printf ("Terminating Child, PID = %d\n",
getpid());
ex1it (0);
} else {
printf ("Running Parent, PID = %d\n",

{
== 0) {

getpid());
(1); /* Infinite loop */

forks.c

Terminating Child, PID 6640

linux> ps
PID TTY
6585 ttyp?9
6639 ttyp9
6640 ttyp?9

ttyp9

TIME
00:00
00:03
00:00
00:00

CMD

tcsh

forks

forks <defunct>

ps

00:
00:
00:
00:

6041l
linux> kill 6639

[1] Terminated
linux> ps

PID TTY

6585 ttyp9

6642 ttyp9

ps shows child process as
“defunct”

Killing parent allows child to be
reaped by init

YW UNIVERSITY of WASHINGTON

Example:
Non-terminating

Child

./forks 8
Terminating Parent,
Running Child, PID = 6676
linux> ps
PID TTY
6585 ttyp?9
6676 ttyp9
6677 ttyp9
linux> kill

linux>

TIME CMD

:00:00 ps

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

L21: Virtual Memory | CSE351, Spring 2019

void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Child,
getpid());

PID = %d\n",

while (1); /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
ex1t (0);
}
} forks.c

:00:00 tcsh
:00:00 forks

PID = 6675

+ Child process still active even
though parent has terminated

« Must kill explicitly, or else will
keep running indefinitely

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Process Management Summary

fork makes two copies of the same process (parent & child)

= Returns different values to the two processes

» exec™* replaces current process from file (new program)

" Two-process program:

« First fork ()

- if (pid ==0) { /* child code */ } else { /* parent code */}
" Two different programs:

« First fork ()

- if (pid == 0) { execv(...) } else { /* parent code */}

» walt or waitpid used to synchronize parent/child execution
and to reap child process

YA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c;;et_mpc_l;1] Processes
. pushqg srbp)
language: movq srsp, $rbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
Code. 1000100111000010
110000011111101000011111

Computer
system:

10

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Virtual Memory (VM¥*)

» Overview and motivation

» VM as a tool for caching

» Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.
11

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXEF---F

" movg (%rdi),Srax

= Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
= Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

" Processes should not interfere with one another 0x00----+-0

- Except in certain cases where they want to share code or data

12

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

1 virtual address space per process,
with many processes...

13

L21: Virtual Memory | CSE351, Spring 2019

YW UNIVERSITY of WASHINGTON

Problem 2: Memory Management

Physical main memory

We have multiple
Each process has...

processes:
Process 1
Process 2 stack
Process 3 . tl:;?s What goes
i;rocess n .data where?

14

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Problem 3: How To Protect

Physical main memory
o >
Process j

Problem 4: How To Share?

Physical main memory

15

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

How can we solve these problems?

’0

» “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

PL
WithOUt |ndiFECtiOn P2 .. ‘; _— Thlng
P ettt | | NewThing
P1
« With Indirection —
P2 oi— — | | Thing
P3—— T -
*1 | NewThing

What if | want to move Thing?

16

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Indirection

Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

= Adds some work (now have to look up 2 things instead of 1)

= But don’t have to track all uses of name/address (single source!)

Examples:

"= Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

17

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

+ Each process gets its own private virtual address space

+ Solves the previous problems!
18

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Address Spaces

+ Virtual address space: Set of N = 2" virtual addr
= {0,1,2,3,..,N-1}

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+» Every byte in main memory has:
= one physical address (PA)
= zero, one, or more virtual addresses (VAs)

19

YA UNIVERSITY of WASHINGTON L21: Virtual Memory |

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

= Unused VAs may not have a mapping

= VAs from different processes may map to same location in memory/disk

Process 1’s Virtual
Address Space

Physical
Memory

i “Swap Space”

20

Process 2’s Virtual Disk

Address Space

S riris

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

A System Using Physical Addressing

Main memory

0:

1:

2:

Physical address (PA) 3:

CPU —> 4
6:

7:

8:

M-1

Data (int/float)

+» Used in “simple” systems with (usually) just one process:

" Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

21

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) '
CPU > MMU —> 4.
0x4100 Ox4 5
= :
7‘ 6:
7:
8:
Memory Management Unit
M-1

0

Data (int/float)

Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

22

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk
- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

+» Simplifies memory management for programmers

= Each process “gets” the same full, private linear address space

+ |solates address spaces (protection)

® One process can’t interfere with another’s memory
- They operate in different address spaces

= User process cannot access privileged information

Different sections of address spaces have different permissions

23

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

VM and the Memory Hierarchy

« Think of virtual memory as array of N = 2" contiguous bytes

+» Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk
= Pages are another unit of aligned memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

Virtual memory Physical memory

0
0 Empty PPO
VP 0 | Unallocated PP 1

VP 1 ’ Empty

Unallocated \ / Empty

. PP 2mP-1

(s,dd) so3ed |eaisAyd

Virtual pages (VP's)

VP 2nP-1

“Swap Space”

24

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2" contiguous
bytes stored on a disk

+» Then physical main memory is used as a cache for the
virtual memory array
= These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP 0| Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached Pp 2m-p-1
VP 2n-P-1 ‘ Uncached - M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
25

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~4mB ! | ~8 GB ‘
L1 L2 Main
a I-cache unified Memory
, cache
32 KB ST
CPU | Re L 4
8 D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

26

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Virtual Memory Designh Consequences

+ Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
= Compared with 64-byte cache blocks

Fully associative
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

Highly sophisticated, expensive replacement algorithms in OS

" Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

= Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

27

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+ The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

= |f (working sets of all processes > physical memory):

- Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or

paging)
- This is why your computer can feel faster when you add RAM

28

YA UNIVERSITY of WASHINGTON L21: Virtual Memory |

CSE351, Spring 2019

Virtual Memory (VM)

» Overview and motivation

» VM as a tool for caching

» Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

29

YW UNIVERSITY of WASHINGTON

Address Translation

L21: Virtual Memory |

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA))
CPU MMU —> 4:
0x4100 Ox4 5-
= :
7‘ 6:
7:
8:
Memory Management Unit
M-1

CSE351, Spring 2019

Data (int/float)

30

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Address Translation: Page Tables

+» CPU-generated address can be split into:

n-bit address: | Virtual Page Number | Page Offset

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?

31

YW UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Page Table Diagram

Virtual page #

PTE O:
PTE 1:
PTE 2:
PTE 3:
PTE 4:
PTE 5:
PTE 6:
PTE 7:

+ Page tables stored in physical memory)

N oo o AW -2 O

Physical memory

(DRAM)
Page Table
(DRAM) VP 1
Valid PPN/Disk Addr VP 2
Il
1 — | VP 4
0 e _
1 ./-?:
0 null A T~~~
0 .'\/ \\\\\
1 o« “~_ S~

" Too big to fit elsewhere — managed by MMU & OS

+» How many page tables in the system?

" One per process

CSE351, Spring 2019

Physical page #

PPO
PP 1
PP 2
PP 3

Virtual memory
(DRAM/disk)

Ta VP 3

* VP 6

32

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Page Table Address Translation

CPU
Virtual address (VA)
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process Valid PPN
>
—
Valid bit = 0:
page not in memory €
(page fault)
4 .
Physical page number (PPN) Physical page offset (PPO)

In most cases, the MMU can Physical address (PA)
perform this translation
without software assistance

33

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Page Hit

« Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null — VP 1 PPO
1 — | : VP2
1 *—
VP 7
0 . /
. Fcen > VP4 PP 3
0 null S
0 e S Virtual memory
PTE7 | 1 o . DY (DRAM/disk)
, N . T4 VP 3
Example: Page size = 4 KiB AR
Virtual Addr: |0x00740b| Physical Addr: ! VP 6
VPN: PPN:
\ J 34

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
" Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

35

YA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

BONUS SLIDES

Detailed examples:
» walt () example
» waltpid () example

36

YW UNIVERSITY of WASHINGTON

wait () Example

+ If multiple children completed, will take in arbitrary order
+ Can use macros WIFEXITED and WEXITSTATUS to get

L21: Virtual Memory |

information about exit status

CSE351, Spring 2019

void forkl0 () {
pid t pid[N];
int 1i;
int child status;

else

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+1); /* Child */
for (1 = 0; 1 < N; 1i++) {

pid t wpid = wait(&child status);
if (WIFEXITED(child_StatuS))

printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));

printf ("Child %d terminated abnormally\n", wpid);

37

waitpid (): Waiting for a Specific Process

pid t waltpid(pid tpid,int &status,intoptions)

" suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll () {
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit (100+41); /* Child */
for (i = 0; i < N; i++) {

pid t wpid = waitpid(pid[i], &child status, O0);
if (WIFEXITED(Child_StatuS))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

YW UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

38

