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Administrivia

+» Homework 4 , due Wed (5/22) (Structs, Caches)
+ Lab 4, due Fri (5/24)
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Processes

+ Processes and context switching
+ Creating new processes
" fork(),exec* (),andwait ()

« Zombies

CSE351, Spring 2019
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Zombies

+ A terminated process still consumes system resources
= Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+~ Reaping is performed by parent on terminated child

" Parent is given exit status information and kernel then
deletes zombie child process

+» What if parent doesn’t reap?

= |f any parent terminates without reaping a child, then the
orphaned child will be reaped by init process (pid == 1)
- Note: on recent Linux systems, init has been renamed systemd

" |n long-running processes (e.g. shells, servers) we need
explicit reaping
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wait: Synchronizing with Children

+ int wait (int *child status)

= Suspends current process (i.e. the parent) until one of its
children terminates

= Return value is the PID of the child process that terminated
« On successful return, the child process is reaped

" Ifchild status !=NULL, thenthe *child status
value indicates why the child process terminated

- Special macros for interpreting this status — see man wait (2)

+ Note: If parent process has multiple children, wait
will return when any of the children terminates
" waitpid can be used to wait on a specific child process
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wait: Synchronizing with Children

void fork wait () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0) ;

} else {

printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;

} forks.c
HC exit
>0— >
printf 7 Feasible output: Infeasible output:
HC HP
CT HP CT
Hp Bye CT Bye

— >0 >6— >0
fork printf wait printf Bye HC
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void fork7 ()
if

Example: Zombie

linux> ./forks 7 &
[1] 6639
Running Parent, PID

while

6639

(fork ()
/* Child */

printf ("Terminating Child, PID = %d\n",
getpid());
ex1it (0);
} else {
printf ("Running Parent, PID = %d\n",

{
== 0) {

getpid());
(1); /* Infinite loop */

forks.c

Terminating Child, PID 6640

linux> ps
PID TTY
6585 ttyp?9
6639 ttyp9
6640 ttyp?9

ttyp9

TIME
00:00
00:03
00:00
00:00

CMD

tcsh

forks

forks <defunct>

ps

00:
00:
00:
00:

6041l
linux> kill 6639

[1] Terminated
linux> ps

PID TTY

6585 ttyp9

6642 ttyp9

ps shows child process as
“defunct”

Killing parent allows child to be
reaped by init
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Example:
Non-terminating

Child

./forks 8
Terminating Parent,
Running Child, PID = 6676
linux> ps
PID TTY
6585 ttyp?9
6676 ttyp9
6677 ttyp9
linux> kill

linux>

TIME CMD

:00:00 ps

linux> ps
PID TTY
6585 ttyp9
6678 ttyp9
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void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Child,
getpid());

PID = %d\n",

while (1); /* Infinite loop */
} else {
printf ("Terminating Parent, PID = %d\n",
getpid());
ex1t (0);
}
} forks.c

:00:00 tcsh
:00:00 forks

PID = 6675

+ Child process still active even
though parent has terminated

« Must kill explicitly, or else will
keep running indefinitely
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Process Management Summary

fork makes two copies of the same process (parent & child)

= Returns different values to the two processes

» exec™* replaces current process from file (new program)

" Two-process program:

« First fork ()

- if (pid ==0) { /* child code */ } else { /* parent code */}
" Two different programs:

« First fork ()

- if (pid == 0) { execv(...) } else { /* parent code */}

» walt or waitpid used to synchronize parent/child execution
and to reap child process
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C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c;;et_mpc_l;1 ] Processes
. pushqg srbp )
language: movq srsp, $rbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
Code. 1000100111000010
110000011111101000011111

Computer
system:

10
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Virtual Memory (VM¥*)

» Overview and motivation

» VM as a tool for caching

» Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.
11
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Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXEF---F

" movg (%rdi),Srax

= Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
= Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

" Processes should not interfere with one another 0x00----+-0

- Except in certain cases where they want to share code or data

12
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Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

1 virtual address space per process,
with many processes...

13
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Problem 2: Memory Management

Physical main memory

We have multiple
Each process has...

processes:
Process 1
Process 2 stack
Process 3 . tl:;?s What goes
i;rocess n .data where?

14
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Problem 3: How To Protect

Physical main memory
o >
Process j

Problem 4: How To Share?

Physical main memory

15
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How can we solve these problems?

’0

» “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

PL
WithOUt |ndiFECtiOn P2 .............................................. ‘; _— Thlng
P ettt | | NewThing
P1
« With Indirection —
P2 oi— — | | Thing
P3—— T -
*1 | NewThing

What if | want to move Thing?

16
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Indirection

Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

= Adds some work (now have to look up 2 things instead of 1)

= But don’t have to track all uses of name/address (single source!)

Examples:

"= Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

17
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Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

+ Each process gets its own private virtual address space

+ Solves the previous problems!
18
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Address Spaces

+ Virtual address space: Set of N = 2" virtual addr
= {0,1,2,3,..,N-1}

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+» Every byte in main memory has:
= one physical address (PA)
= zero, one, or more virtual addresses (VAs)

19
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Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

= Unused VAs may not have a mapping

= VAs from different processes may map to same location in memory/disk

Process 1’s Virtual
Address Space

Physical
Memory

i “Swap Space”

20

Process 2’s Virtual Disk

Address Space

S riris
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A System Using Physical Addressing

Main memory

0:

1:

2:

Physical address (PA) 3:

CPU —> 4
6:

7:

8:

M-1

Data (int/float)

+» Used in “simple” systems with (usually) just one process:

" Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

21
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A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) '
CPU > MMU —> 4.
0x4100 Ox4 5
= :
7‘ 6:
7:
8:
Memory Management Unit
M-1

0

Data (int/float)

Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

22
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Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk
- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

+» Simplifies memory management for programmers

= Each process “gets” the same full, private linear address space

+ |solates address spaces (protection)

® One process can’t interfere with another’s memory
- They operate in different address spaces

= User process cannot access privileged information

Different sections of address spaces have different permissions

23
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VM and the Memory Hierarchy

« Think of virtual memory as array of N = 2" contiguous bytes

+» Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk
= Pages are another unit of aligned memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

Virtual memory Physical memory

0
0 Empty PPO
VP 0 | Unallocated PP 1

VP 1  ’ Empty

Unallocated \ / Empty

. PP 2mP-1

(s,dd) so3ed |eaisAyd

Virtual pages (VP's)

VP 2nP-1

“Swap Space”

24
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or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2" contiguous
bytes stored on a disk

+» Then physical main memory is used as a cache for the
virtual memory array
= These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP 0| Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached Pp 2m-p-1
VP 2n-P-1 ‘ Uncached - M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
25
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Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~4mB ! | ~8 GB ‘
L1 L2 Main
a I-cache unified Memory
, cache
32 KB ST
CPU | Re L 4
8 D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

26
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Virtual Memory Designh Consequences

+ Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
= Compared with 64-byte cache blocks

Fully associative
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

Highly sophisticated, expensive replacement algorithms in OS

" Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

= Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

27
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Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+ The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

= |f (working sets of all processes > physical memory):

- Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or

paging)
- This is why your computer can feel faster when you add RAM

28



YA UNIVERSITY of WASHINGTON L21: Virtual Memory |

CSE351, Spring 2019

Virtual Memory (VM)

» Overview and motivation

» VM as a tool for caching

» Address translation

» VM as a tool for memory management
» VM as a tool for memory protection

29
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Address Translation

L21: Virtual Memory |

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
(VA) (PA) )
CPU MMU —> 4:
0x4100 Ox4 5-
= :
7‘ 6:
7:
8:
Memory Management Unit
M-1

CSE351, Spring 2019

Data (int/float)

30
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Address Translation: Page Tables

+» CPU-generated address can be split into:

n-bit address: | Virtual Page Number | Page Offset

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?

31
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Page Table Diagram

Virtual page #

PTE O:
PTE 1:
PTE 2:
PTE 3:
PTE 4:
PTE 5:
PTE 6:
PTE 7:

+ Page tables stored in physical memory )

N oo o AW -2 O

Physical memory

(DRAM)
Page Table
(DRAM) VP 1
Valid PPN/Disk Addr VP 2
Il
1 — | VP 4
0 e _
1 ./-?:
0 null A T~~~
0 .'\/ \\\\\
1 o« “~_ S~

" Too big to fit elsewhere — managed by MMU & OS

+» How many page tables in the system?

" One per process

CSE351, Spring 2019

Physical page #

PPO
PP 1
PP 2
PP 3

Virtual memory
(DRAM/disk)

Ta VP 3

* VP 6

32
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Page Table Address Translation

CPU
Virtual address (VA)
Page table
base register Virtual page number (VPN) Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process Valid PPN
>
—
Valid bit = 0:
page not in memory €
(page fault)
4 .
Physical page number (PPN) Physical page offset (PPO)

In most cases, the MMU can Physical address (PA)
perform this translation
without software assistance

33
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Page Hit

« Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO | O null  — VP 1 PPO
1 — | : VP2
1 *—
VP 7
0 . /
. Fcen > VP4 PP 3
0 null S
0 e S Virtual memory
PTE7 | 1 o . DY (DRAM/disk)
, N . T4 VP 3
Example: Page size = 4 KiB AR
Virtual Addr: |0x00740b| Physical Addr: ! VP 6
VPN: PPN:
\ J 34
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Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
" Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

35
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BONUS SLIDES

Detailed examples:
» walt () example
» waltpid () example

36
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wait () Example

+ If multiple children completed, will take in arbitrary order
+ Can use macros WIFEXITED and WEXITSTATUS to get

L21: Virtual Memory |

information about exit status

CSE351, Spring 2019

void forkl0 () {
pid t pid[N];
int 1i;
int child status;

else

for (1 = 0; 1 < N; i++)
if ((pid[i] = fork()) == 0)
exit (100+1); /* Child */
for (1 = 0; 1 < N; 1i++) {

pid t wpid = wait(&child status);
if (WIFEXITED(child_StatuS))

printf ("Child %d terminated with exit status %d\n"
wpid, WEXITSTATUS (child status));

printf ("Child %d terminated abnormally\n", wpid);

37




waitpid (): Waiting for a Specific Process

pid t waltpid(pid tpid,int &status,intoptions)

" suspends current process until specific process terminates
= various options (that we won’t talk about)

void forkll () {
pid t pid[N];
int 1i;
int child status;
for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
exit (100+41); /* Child */
for (i = 0; i < N; i++) {

pid t wpid = waitpid(pid[i], &child status, O0);
if (WIFEXITED(Child_StatuS))
printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);
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