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Administrivia

+ Homework 4 , due Wed (5/22) (Structs, Caches)
+ Lab 4, due Fri (5/24)
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Processes

+» Processes and context switching

+» Creating new processes
= fork(), exec*(), andwairt()

« Zombies
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Zombies

+» A terminated process still consumes system resources
" Various tables maintained by OS
= Called a “zombie” (a living corpse, half alive and half dead)

+» Reaping is performed by parent on terminated child

" Parent is given exit status information and kernel then
deletes zombie child process

+» What if parent doesn’t reap?

" |f any parent terminates without reaping a child, then the
orphaned child will be reaped by In1t process (pid == 1)

- Note: on recent Linux systems, In1t has been renamed systemd

" |n long-running processes (e.g. shells, servers) we need
explicit reaping
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wal t: Synchronizing with Children

« Int wart(int *child _status)

= Suspends current process (i.e. the parent) until one of its
children terminates

= Return value is the PID of the child process that terminated

- On successful return, the child process is reaped

= [fchild _status !'=NULL, then the *chi1ld_status
value indicates why the child process terminated
- Special macros for interpreting this status —see manwait(2)

+» Note: If parent process has multiple children, walt
will return when any of the children terminates
= waltpid can be used to wait on a specific child process



WA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Spring 2019

wal t: Synchronizing with Children

void fork wait() {
int child _status;

it (forkQ == 0) { // ¢h1 4
printf("'"HC: hello from child\n');
exi1t(0);

} else { //PM/%%
printfF(""HP: hello from parent\n'');
wairt(&child_status);
printf("'CT: child has terminated\n');

grintf("Bye\n");
1 forks.c
HC exit
S — e
printf Feasible output: Infeasible output:

HC  HP HP

CT HP HC CT

HP ' Bye CT CT Bye

> @ > >®
fork printf wait printf Bye Bye HC
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° o void fork7() {
Example: Zombie | i croro = o) ¢
/* Child */
printf(""Terminating Child, PID = %d\n",

getpid());
exit(0);
} else {
printf(""Running Parent, PID = %d\n",
. getpid());
linux> ./forks 7 & while (1); /* Infinite loop */
[1] 6639 } T pavert versists
Running Parent, PID = 6639 } : pers: forks.c

Terminating Child, PID = 6640
I 1nux>_ps
PID TTY TIME CMD
6585 ttyp9 00:00:00 tcsh
6639 ttyp9 00:00:03 forks
6640 ttyp9 00:00:00 forks <defunct>

6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
PID TTY
6585 ttyp9 (0]0)s
6642 ttyp9 00:

PS shows child process as
“defunct”

Killing parent allows child to be
reaped by Init
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Example:
Non-terminating
Child

void fork8() {
iIf (fork() == 0) {
/* Child */
printf(""Running Child, PID = %d\n",
getpid()):
whille (1); /* Infinite loop */
} else R— child persists
printf(""Terminating Parent, PID = %d\n",
getpid());
exit(0);
+
forks.c

linux> ./forks 8
Terminating Parent, PID
Running Child, PID = 6676
linux> ps
PID TTY
6585 ttyp9
6676 ttyp9

TIME
00:00:00
00:00:06
00:00:00

CMD
tcsh
forks

(O

6677 ttyp9
linux> kill 6676
linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

TIME
00:00:00
00:00:00

CMD
tcsh

pPS

6675

+ Child process still active even
though parent has terminated

0

»  Must kill explicitly, or else will
keep running indefinitely
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Process Management Summary

+» Tork makes two copies of the same process (parent & child)

= Returns different values to the two processes

» @XecC™ replaces current process from file (new program)

= Two-process program:

- First Fork(Q)

. if (pid == 0) { /* child code */ } else { /* parent code */ '}
" Two different programs:

- First Fork(Q)

- if (pid == 0) { execv(...) } else { /* parent code */}

= walt orwaltpid used to synchronize parent/child execution
and to reap child process
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Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
~ —

Assembly get_mpg:

. pushqg %rbp )
language: novG %(:rsp, rbp Virtual memory

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

10
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Virtual Memory (VM¥*)

» Overview and motivation

+» VM as a tool for caching

» Address translation

» VM as a tool for memory management
+» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.
11
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Memory as we know it so far... is virtual!

J
L4

Programs refer to virtual memory addresses OXEE---F

= mov(q ,rax

= Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system

= Where different program objects should be stored
= All allocation within single virtual address space

+ But... ZGL/ L7H >

= We probably don’t hav@ytes of physical memory
b

= We certainly don’t have 2% bytes of physical memory
for every process

= | Processes should not interfere with one another 0x00------0
- Except in certain cases where they want to share code or data

12
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Problem 1: How Does Everything Fit?

64-bit virtual addresses can address hysicalYmain memory offers
veral exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,592 bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address spac@

Staller ‘Hr\w\ ’Hf\‘,g l

1 virtual address space per process,
with many processes...

13
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Problem 2:

We have multiple
processes:

Process 1
~— Process 2
~~ Process 3

——

— Process n

L21: Virtual Memory |

Each process has...

stack
heap
- text

_data

What goes
where?

Memory Management

Physical main memory

e

CSE351, Spring 2019

14
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Problem 3: How To Protect

Physical main memory
o }
Process J

Problem 4: How To Share?

Physical main memory

15
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How can we solve these problems?

« “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

Without Indirection

P1
With Indirection —
P2 : Thing
NewThing

What if | want to move Thing?

16
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Indirection

« Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.
= Adds some work (now have to look up 2 things instead of 1)
= But don’t have to track all uses of name/address (single source!)

«» Examples:

= Phone system: cell phone number portability
"= Domain Name Service (DNS): translation from name to IP address
= (Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

17
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Indirection in Virtual Memory

Virtual memory

S
Process 1

Physical memory

mapping_.

Virtual memory

VA
>

/

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

18
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ceiling funcivn
Address Spaces s ,\F/ oo ap)
n = 2
+ Virtual address space: Set of N = éa;%virtual addr
- {O; 1; 2/ 3; o0y N_l} b\ﬂq j " = rﬂ’o’gzl\’(‘

+» Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+» Every byte in main memory has:

= one physical address (PA)
= zero, one, or more virtual addresses (VAs)

A
j ( iL wed Ly many procesie §
(AP LS ed\ wsed Ly 6he prtess

19



WA UNIVERSITY of WASHINGTON L21: Virtual Memory |

Mapping

+ A virtual address (VA) can be mapped to either physical
memory or disk

= Unused VAs may not have a mapping

= NAs from different processes may map to same location in memory/disk

Process 1’s Virtua
Address Space

Physical
Memory

Process 2’s Virtual
Address Space

Disk

S “Swap Sp@

20

S riris
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A : : :
A System Using Physical Addressing

Main memory

0:
1:
2:
Physical address (PA) 3:
CPU —> 4.
A
6:
7: [
8:
M-1:

Data (int/float)

+ Used in “simple” systems with (usually) just one process:

= Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

21
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A System Using Virtual Addressing

Main memory

0:

CPU Chip 1:

irtual address Physical address 3:

CPU 2 > MMU (P —> 4:
0x4100 2 I L

B (O4100% 5
M -bit [ - brh 6: [

7:

8:

Memory Management Unit
M-1

Data (int/float)

°,

» Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
"= One of the great ideas in computer science

22
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Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk
- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed
« Simplifies memory management for programmers

= Each process “gets” the same full, private linear address space

+ Isolates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces
= User process cannot access privileged information

Different sections of address spaces have different permissions

23
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VM and the Memory Hierarchy

% Think of virtual memory as array of N = 2" contiguous bytes

+ Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk pe ‘ﬁ,% P

= Pages are another unit of alignhed memory (size is P = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

ho u&s'fe)\ Sr’“e /5@()5

Virtual memory Physical memory o

0 =3

0 Empty |PPO )

> VP 0 | Unallocated /Q ~ Irp1 8

: —_————— |

g VP1] 10 mem Empty IS

- in disk o

] wn

[ Unallocated \ / Empty —

© o

o > PP2mP-1 T

© L
>
s
>

VP 2P-1

“Swap Space”

24
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or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2" contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array

" These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP 0 | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached PP 2m-p-1
VP 2P ‘ Uncached | . M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
25
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Memory Hierarchy: Core 2 Duo

Not drawn to scale

CPU Reg

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~qmMB 1| ~8 GB ‘ ~500 GB
L1 L2
> I-cache unified
a cache
. 32 KB
e 3
D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

26
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Virtual Memory Design Consequences

« Large page size: typically 4-8 KiB or 2-4 MiB
" Can be up to 1 GiB (for “Big Data” apps on big computers)
= Compared with 64-byte cache blocks

JTRYLE LaIE DIOLRS
4 Fully associative (physical memory is single set)
= Any virtual page can be placed in any physical page

= Requires a “large” mapping function — different from CPU caches

« Highly sophisticated, expensive replacement algorithms in OS

" Too complicated and open-ended to be implemented in hardware

= Write-back rather than write-through (tead diety pages)

= Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

27
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Why does VM work on RAM/disk?

+» Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

= |f (working sets of all processes > physical memory):

< Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when you add RAM

28
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Virtual Memory (VM)

+» Overview and motivation

» VM as a tool for caching

» Address translation

+» VM as a tool for memory management
» VM as a tool for memory protection

CSE351, Spring 2019

29
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Address Translation

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address Physical address ;
CPU i MMU (PA) —> 4:
0x4100 Ox4 :.
= :
7‘ 6:
7:
8:
Memory Management Unit
M-1

CSE351, Spring 2019

%r_J

Data (int/float)

30
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Address Translation: Page Tables
VPN width n-p e have prpajﬂ i~ VA space Peit si'ie‘,- P b"‘,e’
+» CPU-generated address carLbe splitinto: | & p= oy, P boits
n-p it P 2
A -~ f\/\—/—\
n-bitaddress: | Virtual Page Number | Page Offset

a\v\a‘ijj “‘o: | lg'oc\( Aurbeyr | block oH et ]’g)f (&(Jﬂ€5
= Request is Virtual Address (VA), want Physical Address (PA)

= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?

31
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Page Table Diagram

S pése in RAM7 Physical memory Physi%aiillzlage #
(DRAM) /
Page Table
Virtual page # (DRAM) VP 1 PPQO_
VPN v
Valid PPN/Disk Addr VP 2 PP1.
@lﬁna\\\x&\'@) pa PTEO: 0] O null //
JePTEl@l *FN\IOO/./_/ Y PP2
PrE2: (2] 1 [Epa) ) VP 4 PP 3
PTE3: 3 [ 0 |ja) ccdr ® < .
@paje m RAM PTE 4:@ 1| PPN ./"‘ Virtual memory
PTES: 5| 0 null A T~ (DRAM/disk)
® puse on disk PTEE: 6| O [disk sddv & -~ TS~
PrE7: (7)1 [ VW FN 27 ~=~_ T~
CT ...) \\\\\ \\\\\
s9e Tabe gy 9™ emt,,ejf el ~3 VP33
+ Page tables stored in physical memory ~~<__
= Too big to fit elsewhere — managed by MMU & OS RN VP e

+» How many page tables in the system?

" One per process

32
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Page Table Address Translation

| C\f\omgea o

CP A & contexT surcha _
o Virtual address (VA) /
Page table )
base register ;% Virtual page number (VPN) Virtual page offset (VPO) n \o! J
(PTBR) L’—\/\/ [ ~——
\\_’/ / \J
Page table address Page table
for process 5 Valid PPN
Clr\C(/\( P09€ "Q ( /’ V PO"-‘: P?O
e o VPN ety
Valid bit = 0:
page not in memory €
(page fault)
| B |
Physical page number (PPN) / Physical page offset (PPO) m \ol’b'
In most cases, the MMU can Physical address (PA) /

perform this translation
without software assistance

33
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Page HI/t

/

+ Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO| O null — VP 1 PPQ
1 — > VP 2 [
1 *—
Y VP 7 2
0 o /
- P : VP 4 PP 3
0 null N
0 e A Virtual memory
— =0 |l Y Nt N (DRAM/disk)
) - N S~ M vps
Example: Page size =4 KiB=7'"B <= p=IZhts= 3he i 5 o
Virtual Addr: OXOO7/18b Physical Addr: |Oy 2 40 h VP 6
VPN / pTtset~ " —5
() vPN: e @pPpPN: 2
\ J 34
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Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

= |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
" Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

35
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BONUS SLIDES

Detailed examples:
« wart() example
« wartprd() example

36
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wailt() Example

+ If multiple children completed, will take in arbitrary order

« Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void forkl0(Q {
pid _t pid[N];
int 1;
int child _status;
for (i = 0; 1 < N; 1++)
iIT ((pid[i] = fork()) == 0)
ex1t(100+1); /* Child */
for (i = 0; 1 < N; 1++) {
pid t wpid = wart(&child _status);
iIT (WIFEXITED(child _status))
printf(""Child %d terminated with exit status %d\n',
wpid, WEXITSTATUS(child _status));
else
printf(""Child %d terminated abnormally\n', wpid);
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wartpird(): Waiting for a Specific Process

pid t wairtpid(pid _tpid, inté&status, intoptions)
" suspends current process until specific process terminates

= various options (that we won’t talk about)

void forkl1(Q {
pid _t pid[N];
int 1;
int child _status;
for (i = 0; 1 < N; 1++)
iIT ((pid[i] = fork()) == 0)
ex1t(100+1); /* Child */
for (i = 0; 1 < N; 1++) {
pid t wpid = waitpid(pid[1], &child status, 0);
iIT (WIFEXITED(child _status))
printfF(""Child %d terminated with exit status %d\n',
wpid, WEXITSTATUS(child _status));

else
printf(""Child %d terminated abnormally\n', wpid);




