
CSE351, Spring 2019L19: Caches IV

Caches IV
CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai Jack Eggleston John Feltrup
Britt Henderson Richard Jiang Jack Skalitzky
Sophie Tian Connie Wang Sam Wolfson
Casey Xing Chin Yeoh

http://xkcd.com/908/

http://xkcd.com/908/

CSE351, Spring 2019L19: Caches IV

Administrivia

 Lab 3, due TONIGHT, Wednesday (5/15)

 Homework 4 , due Wed (5/22) (Structs, Caches)

 Lab 4, Coming soon!

 Cache parameter puzzles and code optimizations

2

CSE351, Spring 2019L19: Caches IV

Write-back, write-allocate example

3

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
ignoring block offsets. Here a block
holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache.

Contents of memory stored at address G

CSE351, Spring 2019L19: Caches IV

Write-back, write-allocate example

4

0xBEEFCache

Memory

G

0xCAFE

0xBEEF

0

F

G

mov 0xFACE, F

dirty bit

CSE351, Spring 2019L19: Caches IV

0xBEEFU 0

Write-back, write-allocate example

5

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xCAFE 0

Step 1: Bring F into cache

mov 0xFACE, F

CSE351, Spring 2019L19: Caches IV

0xBEEFU 0

Write-back, write-allocate example

6

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

dirty bit0xFACE 1

Step 2: Write 0xFACE
to cache only and set
dirty bit

mov 0xFACE, F

CSE351, Spring 2019L19: Caches IV

0xBEEFU 0

Write-back, write-allocate example

7

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov 0xFEED, F

dirty bit0xFACE 1

Write hit!
Write 0xFEED to

cache only

mov 0xFACE, F

CSE351, Spring 2019L19: Caches IV

0xBEEFU 0

Write-back, write-allocate example

8

0xCAFECache

Memory

F

0xCAFE

0xBEEF

F

G

mov G, %rax

dirty bit0xFEED 1

mov 0xFEED, Fmov 0xFACE, F

CSE351, Spring 2019L19: Caches IV

Write-back, write-allocate example

9

0xBEEFCache

Memory

G

0xFEED

0xBEEF

0

F

G

dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so
we can copy it into %rax

mov G, %raxmov 0xFEED, Fmov 0xFACE, F

CSE351, Spring 2019L19: Caches IV

Peer Instruction Question

 Which of the following cache statements is FALSE?

 Vote at http://pollev.com/rea

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We’re lost…
10

http://pollev.com/rea

CSE351, Spring 2019L19: Caches IV

Optimizations for the Memory Hierarchy

 Write code that has locality!

 Spatial: access data contiguously

 Temporal: make sure access to the same data is not too far
apart in time

 How can you achieve locality?

 Adjust memory accesses in code (software) to improve miss
rate (MR)
• Requires knowledge of both how caches work as well as your system’s

parameters

 Proper choice of algorithm

 Loop transformations

11

CSE351, Spring 2019L19: Caches IV

Example: Matrix Multiplication

12

C

= ×

A B

ai* b*j

cij

CSE351, Spring 2019L19: Caches IV

Matrices in Memory

 How do cache blocks fit into this scheme?

 Row major matrix in memory:

13

Cache
blocks

COLUMN of matrix (blue) is spread
among cache blocks shown in red

CSE351, Spring 2019L19: Caches IV

Naïve Matrix Multiply

move along rows of A

for (i = 0; i < n; i++)

move along columns of B

for (j = 0; j < n; j++)

EACH k loop reads row of A, col of B

Also read & write c(i,j) n times

for (k = 0; k < n; k++)

c[i*n+j] += a[i*n+k] * b[k*n+j];

14

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

CSE351, Spring 2019L19: Caches IV

Cache Miss Analysis (Naïve)

 Scenario Parameters:
 Square matrix (𝑛 × 𝑛), elements are doubles

 Cache block size 𝐾 = 64 B = 8 doubles

 Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

 Each iteration:

𝑛

8
+ 𝑛 =

9𝑛

8
misses

15

×=

Ignoring
matrix c

CSE351, Spring 2019L19: Caches IV

Cache Miss Analysis (Naïve)

 Scenario Parameters:
 Square matrix (𝑛 × 𝑛), elements are doubles

 Cache block size 𝐾 = 64 B = 8 doubles

 Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

 Each iteration:

𝑛

8
+ 𝑛 =

9𝑛

8
misses

 Afterwards in cache:
(schematic)

16

×=

×=

8 doubles wide

Ignoring
matrix c

CSE351, Spring 2019L19: Caches IV

Cache Miss Analysis (Naïve)

 Scenario Parameters:
 Square matrix (𝑛 × 𝑛), elements are doubles

 Cache block size 𝐾 = 64 B = 8 doubles

 Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

 Each iteration:

𝑛

8
+ 𝑛 =

9𝑛

8
misses

 Total misses:
9𝑛

8
× 𝑛2 =

9

8
𝑛3

17

×=

Ignoring
matrix c

once per element

CSE351, Spring 2019L19: Caches IV

Linear Algebra to the Rescue (1)

 Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

 For example, multiply two 4×4 matrices:

18

This is extra
(non-testable)

material

CSE351, Spring 2019L19: Caches IV

Linear Algebra to the Rescue (2)

19

Matrices of size 𝑛 × 𝑛, split into 4 blocks of size 𝑟 (𝑛=4𝑟)

C22 = A21B12 + A22B22 + A23B32 + A24B42 = k A2k*Bk2

 Multiplication operates on small “block” matrices
 Choose size so that they fit in the cache!
 This technique called “cache blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

This is extra
(non-testable)

material

CSE351, Spring 2019L19: Caches IV

Blocked Matrix Multiply

 Blocked version of the naïve algorithm:

 𝑟 = block matrix size (assume 𝑟 divides 𝑛 evenly)

20

move by rxr BLOCKS now

for (i = 0; i < n; i += r)

for (j = 0; j < n; j += r)

for (k = 0; k < n; k += r)

block matrix multiplication

for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE351, Spring 2019L19: Caches IV

Cache Miss Analysis (Blocked)

 Scenario Parameters:

 Cache block size 𝐾 = 64 B = 8 doubles

 Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

 Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

 Each block iteration:

 𝑟2/8 misses per block

 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

21

𝑛/𝑟 blocks
𝑟2elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

CSE351, Spring 2019L19: Caches IV

Cache Miss Analysis (Blocked)

 Scenario Parameters:

 Cache block size 𝐾 = 64 B = 8 doubles

 Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

 Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

 Each block iteration:

 𝑟2/8 misses per block

 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

 Afterwards in cache
(schematic)

22

𝑛/𝑟 blocks
𝑟2elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

×=

CSE351, Spring 2019L19: Caches IV

Cache Miss Analysis (Blocked)

 Scenario Parameters:

 Cache block size 𝐾 = 64 B = 8 doubles

 Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

 Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

 Each block iteration:

 𝑟2/8 misses per block

 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

 Total misses:

 𝑛𝑟/4 × (𝑛/𝑟)2 = 𝑛3/(4𝑟)
23

𝑛/𝑟 blocks
𝑟2elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

CSE351, Spring 2019L19: Caches IV

Matrix Multiply Visualization

 Here 𝑛 = 100, 𝐶 = 32 KiB, 𝑟 = 30

24

Naïve:

Blocked:

≈ 1,020,000
cache misses

≈ 90,000
cache misses

CSE351, Spring 2019L19: Caches IV

Cache-Friendly Code

 Programmer can optimize for cache performance
 How data structures are organized

 How data are accessed
• Nested loop structure

• Blocking is a general technique

 All systems favor “cache-friendly code”
 Getting absolute optimum performance is very platform

specific
• Cache size, cache block size, associativity, etc.

 Can get most of the advantage with generic code
• Keep working set reasonably small (temporal locality)

• Use small strides (spatial locality)

• Focus on inner loop code

25

CSE351, Spring 2019L19: Caches IV

The Memory Mountain

26

128m

32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9

s11

Size (bytes)

R
e

ad
 t

h
ro

u
gh

p
u

t
(M

B
/s

)

Stride (x8 bytes)

Core i7 Haswell
2.1 GHz
32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slopes
of spatial
locality

Ridges
of temporal
locality

L1

Mem

L2

L3

Aggressive
prefetching

CSE351, Spring 2019L19: Caches IV

Learning About Your Machine

 Linux:
 lscpu

 ls /sys/devices/system/cpu/cpu0/cache/index0/
• Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size

 Windows:
 wmic memcache get <query> (all values in KB)

 Ex: wmic memcache get MaxCacheSize

 Modern processor specs: http://www.7-cpu.com/

27

http://www.7-cpu.com/

