YA UNIVERSITY of WASHINGTON

Caches IV

CSE 351 Spring 2019

Instructor:
Ruth Anderson

\WJHATS THIS?

THE CLOUD.

Gavin Cai

Britt Henderson

Sophie Tian
Casey Xing
HUH? T ALWAYS THOUGHT “HE

CLOVD wis A HUGE, AMORPHOUS
NETWORK. OF SERVERS SOMEWHERE.

YERH, BUT EVERYENE BUYS

SERVER TiME FROM EVERIONE, |

ELSE. INTHE END, THEYRE
ALL GETTNG T HERE,

|
O

L19: Caches IV

Teaching Assistants:

Jack Eggleston

Richard Jiang

Connie Wang

CSE351, Spring 2019

John Feltrup
Jack Skalitzky
Sam Wolfson

Chin Yeoh

HOW? YOURE ON | | SHOULD THE CorD BE WHAT IF SOMEDNE TRiIFs oM IT?
A (PRLE MODEM. | | STRETEHED AcRDSS ‘i T DO THAT?
THE ROOM LIKE THIST (;Hmj o1 mgm |mm ramrrm'.

OF CoURE. IT | | UH. SOMETIMES PECRE (
L+ TERES A LOT HAs TOREACH | | DO STUFF BY ACCIDENT.

OF CACHING, THE SERVER, T DONT THINK
AND THE SERVER S T kMW ANYBODY
1S OVER THERE. LIKE THAT,

\

JA

O O)

http://xkcd.com/908/

http://xkcd.com/908/

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Administrivia

+» Lab 3, due TONIGHT, Wednesday (5/15)
+» Homework 4 , due Wed (5/22) (Structs, Caches)
+» Lab 4, Coming soon!

" Cache parameter puzzles and code optimizations

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

Contents of memory stored at address G

v
Cache G OxXxBEEF 0] [<— dirty bit
2

e

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

Memor F OXCAFE In this example we are sort of
y X ignoring block offsets. Here a block
G OxBEEF holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 3

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OxFACE, F

Cache G OxXxBEEF 0] [<— dirty bit

Memory F OxCAFE

G OxBEEF

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OxFACE, F

Cache F | OxCAFE ol < dirty bit

Step 1: Bring F into cache

Memory F OxCAFE

G OxBEEF

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OxFACE, F

Cache F | OxFACE 1| f&— dirty bit

Step 2: Write OxFACE
to cache only and set

dirty bit

Memory F OxCAFE

G OxBEEF

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OxFACE, F mov OXFEED, F
Cache F | OxFACE 1| f&— dirty bit
Write hit!
Write OXxFEED to
cache only
Memory F OxCAFE

G OxBEEF

YA UNIVERSITY of WASHINGTON L19: Caches IV

Write-back, write-allocate example

mov OxXFACE, F mov OXFEED, F mov G, %rax
Cache F] 0xXFEED 1] dirty bit
Memory F OxCAFE

G OxBEEF

CSE351, Spring 2019

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OxXFACE, F mov OXFEED, F mov G, %rax

Cache G OxXxBEEF 0] [<— dirty bit

1. Write F back to memory
since it is dirty

2. Bring G into the cache so

Memory F OxXFEED we can copy it into $rax

G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Peer Instruction Question

« Which of the following cache statements is FALSE?
= Vote at http://pollev.com/rea

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

10

http://pollev.com/rea

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Optimizations for the Memory Hierarchy

+» Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve miss
rate (MR)

- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" |oop transformations

11

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Example: Matrix Multiplication

D-
*

h.

12

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Matrices in Memory

+» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —
among cache blocks shown in red

13

L19: Caches IV

CSE351, Spring 2019

YA UNIVERSITY of WASHINGTON

Naive Matrix Multiply

1 < n;

move along rows of A
for (1 = 0;
move along columns of B
for (7 = 0;

EACH k loop

Also read &

i++)

7 < n; Jt+)

reads row of A,

col of B

write c(1,J) n times

for (k = 0; k < n; k++)

cli*ntj] += ali*ntk] * blk*n+]];
C(i,j) C(i,j) A(i,:)

O — | b 4 s | fB(,j)

14

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Naive) ['gno””g]

matrix c

+» Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache block size K =64 B = 8 doubles
" Cachessize C < n (much smaller than n)

« Each iteration:

1
X

n In)
" — 4+ N =—misses
8 8

15

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Naive) ['gno””g]

matrix c

+» Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache block size K =64 B = 8 doubles
" Cachessize C < n (much smaller than n)

« Each iteration:
= X
. E+n =9—nmisses
8 8
= Afterwards in cache:
(schematic) = X

8 doubles wide
16

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Naive) ['gmfing]

matrix c

+ Scenario Parameters:
= Square matrix (n X n), elements are doubles

® Cache block size K = 64 B = 8 doubles
" Cachessize C < n (much smaller than n)

« Each iteration:

1
X

In
= —+n —?mlsses

. Tl
« Total misses: —

/||

once per element
17

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

+» Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:

11 Qg2 Qg3 Aq47

a a a a A A . . .
A=t 22 C23 t2d -t 12], with B defined similarly.
31 Q3zz Q33 A3y A,y Ay,

Ayq Ayp g3z Qyg.
(A11By1 + A12B51) (A11B12 + 413B5,)
(A31By1 + A53B51) (A31B12 + 45,B5,)

AB=[

18

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

material
Cuy Cyp, Cis Cia Ay A A3 Ay By B, Bis B4
Co Co, Cos Co4 Ay As, Aos Ay, B, B, B,s B,,
Cs Cs, Cus Ca4 Az Az, Ass Az, B3, Bs, Bss Bs,
Ca Ca Cus Cuy Ap Ay Az EA144 B4 Bo B3 B4

Matrices of size n X n, split into 4 blocks of size r (n=4r)
C,, =A, B, +A,B,, + AyBy, +A,B,, = 2 A B,

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called “cache blocking”

19

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Blocked Matrix Multiply

+ Blocked version of the naive algorithm:

move by rxr BLOCKS now
for (1 = 0; 1 < n; 1 += r)
for (7 = 0; 7 < n; J += r)
for (k = 0; k < n; k += 1)
block matrix multiplication
for (ib = 1; 1ib < i+r; 1ib++)
for (jb = 3; jb < j+r; jb++)
for (kb = k; kb < k+r; kb++)
clib*n+jb] += al[ib*n+tkb]*b[kb*n+jb];

" r = block matrix size (assume r divides n evenly)

20

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

rZ elements per block, 8 per cache block n/rjblocks

'd N\
kX Eacf)/b/lock iteration: @ HEEERR

= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

X

21

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Blocked) ['gno””g]

matrix c

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

rZ elements per block, 8 per cache block n/erlOCkS

'd N\
kX Eacf)/b/lock iteration: @ HEEERR

= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

= Afterwards in cache M EEENN
(schematic)

X

1
X

22

CSE351, Spring 2019

YA UNIVERSITY of WASHINGTON L19: Caches IV

Cache Miss Analysis (Blocked)

<« Scenario Parameters:

= Cache block size K = 64 B = 8 doubles

" Cachessize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

r2 elements per block, 8 per cache block

kX Eacf)/b/lock iteration: @

= 2 /8 misses per block
" 2n/r Xr?/8 = nr/4

n/r blocks in row and column

+ Total misses:
" nr/4 X (n/r)2 =n3/(4r)

[

lgnoring
matrix c

X

n/r blocks
A
r N

23

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Matrix Multiply Visualization

+» Heren =100, C =32 KiB, r =30
Naive:

Blocked:

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

24

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”
" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.
= Can get most of the advantage with generic code
- Keep working set reasonably small (temporal locality)

- Use small strides (spatial locality)
« Focus on inner loop code

25

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Core i7 Haswell
- 2.1 GHz
The Memory Mountaln 32 KB L1 d-cache
256 KB L2 cache

Aggressive 8 MB L3 cache
prefetching 64 B block size

— 14000 ;

)

2 12000

3

L

5 10000 -

§ 8000 k Ridges

o —>- of temporal

€ 6000 . ~ Ic{calitp

- !
4000
2000 ,
Slopes /}
of spatial <k 32k
localit 128k
y . 512k
2m
Stride (x8 bytes) s9 ' 32m 8m Size (bytes)
s11
128m

26

YA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Learning About Your Machine

<+ Linux:
" lscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size
+~ Windows:
" wmic memcache get <query> (all valuesin KB)

" EX: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

27

http://www.7-cpu.com/

