WA UNIVERSITY of WASHINGTON

Caches IV

CSE 351 Spring 2019

Instructor:
Ruth Anderson

\WHATS THIS?

THE CLOUD.

\:"
2

Gavin Cai

Britt Henderson

Sophie Tian
Casey Xing

HUH? T ALWAYS THOUGHT THE
CLOVD wis A HUGE, AMORPHOUS
NETWORK. OF SERVERS SOMEWHERE.

YERH, BUT EVERYENE BUNS
SERVER TiME FROM EVERYONE
ElSE. IN THE END, THEYRE
AL GETTNG T HERE,

|
O

L19: Caches IV

Teaching Assistants:

Jack Eggleston

Richard Jiang

Connie Wang

CSE351, Spring 2019

John Feltrup
Jack Skalitzky
Sam Wolfson

.

Chin Yeoh
HOW? YOURE ON | | SHOULD THE CorD BE WHAT IF SOMEDNE TRiIFs oM IT?
A CPELE MODEM. | | STRECHED ACRDES \HO T X
THE ROOM LIKE THIST (;mp o1 mgm |mm Dﬂmmm'.
OF CoURE. IT | | UH. SOMETIMES PECRE k
z HAS TOREACH | | DO STUFF BY ACCIDENT,
| THE SERVER, T DONT THINK
AND THE SERVER S T KNOW ANYEEDY
15 DVER THERE. LIKE. THAT.

O O)

J&

http://xkcd.com/908/

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Administrivia

+» Lab 3, due TONIGHT, Wednesday (5/15)
+ Homework 4 , due Wed (5/22) (Structs, Caches)
% Lab 4, Coming soon!

" Cache parameter puzzles and code optimizations

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

V&\IA IOH— f\d\/ ‘SL\MV\}

Contents of memory stored at address G
bt asume LHor all of exc\mr,le Y

Cachel \ |7G OXBEEF 0l le— dirty bit

e

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of

F

Memory OXCAFE ignoring block offsets. Here a block
G OxBEEF holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 3

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

urﬂe \M§$§

mov OXFACE, F
O chede cache for F = mis

@ pull blodk o §) dhen write

Cache G OXBEEF <~ dirty bit
the same 50 /
Memory F OxCAFE
G T“ OXBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OXFACE, F

W At > Hlodk

U
Cache F OxCAFE 0l [s— dirty bit
71

Q) ’FC"?)’\ l:)’oc\q
Step 1: Bring F into cache

\/\\

Memory F @XCAFE)
G OXBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OXFACE, F

——
Cache F OxFACE { 1 dirty bit

j (hequse write-back)
4 N

A\hqeren‘q Step 2: Write OXFACE
to cache only and set
- dirty bit
Memory F [OXCAF
e —

G OxXBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

urac l"H’
mov OXFACE, F mov OXFEED, F

Wy, te W<

Cache F MO\(FEED 1| [dirty bit

Write hit!
Write OXFEED to
cache only

Memory F OxCAFE
G OxBEEF

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Write-back, write-allocate example

mov OXFACE, F mov OXFEED, F mov G, %rax
\ £33 m3SS
Cache F OxXFEED 1| [<— dirty bit

Memory F OxCAFE
G OxBEEF

WA UNIVERSITY of WASHINGTON

L19: Caches IV

CSE351, Spring 2019

Write-back, write-allocate example

mov OXFACE, F

mov OXFEED, F

mov G, %rax

dadn still consistendt

L’ Witk mennov
Cache G OXBEEF <— dirty bit
/
Dovicted O losd rew
U;f’;w 1. Write F back to memory
/ since it is dirty
o 2. Bring G into the cache so
Memory F OXFEED / we can copy it into %rax
A
G (OXBEEF)

D —

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Peer Instruction Question

+» Which of the following cache statements.is FALSE?

= \/ote at http://pollev.com/rea

<c\SQ@. We can reduce compulsory misses Igy decrigeasing
. ~ blo (Y= T 43__; ks
our block size smeller Beds SZRIE Touar bytes i

On & Pass
B. We can reduce conflict misses by increasing

S associativity ™ oo T place Hotks before
evictions oG

C. A write-back cache will save time for code with

’ H ° uén I ~ lol
B good temporal locality on wrltesﬂjﬁ;cie;f e bﬁ‘ﬁ}ﬁ?

Ao D. A write-through cache will always match data

\Es, s ma i

with the memory hierarchy level below itgwl 5 ddla
onsisTen
E. We're lost... e

10

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Optimizations for the Memory Hierarchy

+» Write code that has locality!
= Spatial: access data contiguously

= Temporal: make sure access to the same data is not too far
apart in time

+» How can you achieve locality?

= Adjust memory accesses in code (software) to improve ﬂs,s_,

rate (MR)
- Requires knowledge of both how caches work as well as your system’s
parameters

" Proper choice of algorithm
" Loop transformations —

11

o
~
o
N
(o)}
£
—
[
w
-
0
™
L
2]
O

L19: Caches IV

WA UNIVERSITY of WASHINGTON

c

O

ofd

(¢v]

—

a

=

W

>

= 1l

fd

(¢s)

>

U C EEEEEEEE

</ EREEEEEE
Ny EEEEEE

& ENEEEEEE

©

x pp—

L @

12

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Matrices in Memory

«» How do cache blocks fit into this scheme?

" Row major matrix in memory:

COLUMN of matrix (blue) is spread —

among cache blocks shown in red
13

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Naive Matrix Multiply

move along rows of A
for (1 = 0; 1 < n; 1++)
move along columns of B
for (J =0; J < n; jJ++t)
EACH k loop reads row of A, col of B
Also read & write c(1,jJ) n times
for (k = 0; k < n; k++)
C[i*ﬂfj](i:)a[i*n+k] * b[k*n+j}];

BUAe (L™ @ Read ® Reod 6>Rend.
%%8 C(i,j) Ali,:) l
— H _|_ e X B(:,j) -
D \(/

CUDO Y+ =2 0] x LTS

WA UNIVERSITY of WASHINGTON L19: Caches IV

CSE351, Spring 2019

Cache Miss Analysis (Naive) ['3“0””8]

matrix C

<« Scenario Parameters:

= Square matrix (n X n), elements are doubles
= Cache block size K =64 B =8 doublesd% ko elements per

CG\C\'\(" bIDCk
#¢ Cachesize C K n (much smaller than n)
kcy GSIU\MP" ion.’
C 1234 A %
N . | oDy ?1
+ Each iteration: }‘
A B —
on —_ X
- —+n = — misses
8 8
Vsor @‘@ \ 4 e‘l'ime \nl
Compa 7/1 ‘ J \9/ L\ 5&'41)
I bes cod MHAHHHHBH (o] | e, Hod hw been
0o |
5(’6\“'{6\1 (O(QH\/ low'@jv_‘_“))w‘ l l I t s—\,’.&@”h’)l@)' 7 \(1‘@\(9& b\ﬁ G(L $
stride-1 87@1 Jl

dY@“—'"___(15

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Naive) ['3”0””8]

matrix C

+» Scenario Parameters:
= Square matrix (n X n), elements are doubles
= Cache block size K =64 B = 8 doubles
" Cache ssize C < n (much smaller than n)

. . 0 —
« Each iteration:
n on . — X
" — 4 n =—misses
8 8
= Afterwards in cache:
(schematic) = X
re& SLOQ‘"()
H X! rewd\mivj

inthe P 8 doubles wide e

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Naive) ['3”0””8]

matrix C

+» Scenario Parameters:
= Square matrix (n X n), elements are doubles

" Cache block size K = 64 B = 8 doubles
" Cache ssize C < n (much smaller than n)

« Each iteration:

1
X

n on .
" — 4+ n =—misses
8 8

. 9N (9 !
+ Total misses: - X n{\z §n3

once per element

17

WA UNIVERSITY of WASHINGTON L19: Caches IV

CSE351, Spring 2019

This is extra

Linear Algebra to the Rescue (1) (non-testable)

material

% Can get the same result of a matrix multiplication by

splitting the matrices into smaller submatrices
(matrix “blocks”)

+» For example, multiply two 4x4 matrices:
Al\ A\L

ay; @zl Gz Gy4
_ |921_ Q21923 Qa4 _ [An Ay
A31 ~ U377 (33" Q34| |A,, Ay
Ay Qgp LaﬁA_ Ayq

], with B defined similarly.

2l

AB = [(AllBll +A12B21) (A11B12 2 AlZBZZ)
(A21Bll +A22821) (A21812 + A22B22)

18

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

material

This is extra
Linear Algebra to the Rescue (2) [(non-testable)]

C11 C12 C13 C14 A11 A12 A13 A14 B11 E'BQ) B13 B14

C23 C24 2A215/<§g @ /A24\ BZ1 2 BZS BZ4

C31 C32 C43 C34 A31 A32 A33 A34 B32 '@ B33 B34

K

C41 C42 C43 C44 A41 A42 A43 A144 B41 [E4é\ B43 B44

Matrices of size n X n, split into 4 blocks of size r (n=4r)

w

C,, =A, By, +AB,, + AyByy +A,B,, = 24 A B,

+» Multiplication operates on small “block” matrices
= Choose size so that they fit in the cache!
= This technique called [“cache blocking’\ vt

19

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

0\\’ Seen

Blocked Matrix Multiply L opested P

,\, W \e(»dl

]eS) C’H AA ,{‘adef (Qo\f’
+ Blocked version of the naive algorithm: + ~*

move by rxr BLOCKS now

for (i = 0; i <n; i += 1) L] \;’wa e
for (=0; J <n; jJ +=1r) s % a Pod,
for(k:O;k<n;k+:r) é\’ é-‘-}\»\,&

block matrix multiplication
SIL for (ib = i; Ib < 1+r; 1b++)

A for (jb = j; jb < j+r; jb++)
mi: for (kb = k; kb < k+r; kb++)
L) oce c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb]:

" 1 = block matrix size (assume r divides n evenly)

20

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Blocked) ['3”0””8]

matrix C

+ Scenario Parameters:
" Cache block size K = 64 B = 8 doubles
" Cache ssize C < n (much smaller than n)
/7E Threg@ks M (r X r)fitinto cache: 3r¢ < C

%ements per block, 8 per cachm n/r blocks
: o
% Each/block iteration: M EEEEE

= 2 /8 misses per block —
" 2n/r Xr?/8 =nr/4

n/r blocks in row and column

21

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Blocked) ['3”0””8]

matrix C

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cache ssize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

/r2 elements per block, 8 per cache block rn/erlOCk':
2 Each/block iteration: m ERERN =
= 2 /8 misses per block = X .
" 2n/r Xr?/8 = nr/4 —

n/r blocks in row and column

= Afterwards in cache] HEEEN
(schematic)

1
X

22

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache Miss Analysis (Blocked) ['3”0””8]

matrix C

+» Scenario Parameters:
= Cache block size K =64 B =8 doubles
" Cache ssize C < n (much smaller than n)
= Three blocks M (r X r) fit into cache: 3r2 < C

/r2 elements per block, 8 per cache block rn/erlOCk':
2 Each/block iteration: m HEEREN =
= 2 /8 misses per block = X .
" 2n/r Xr?/8 = nr/4 —

n/r blocks in row and column

« Total misses:
"nr/4 X (n/r)2 =n3/(4r) w /8

23

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Matrix Multiply Visualization

+ Heren =100, C =32 KiB,r =30
Naive:

I

Cache misses: 551888

_
Cache misses: 53,888

=~ 1,020,000

cache misses _

~ 90,000
cache misses

24

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Cache-Friendly Code

+» Programmer can optimize for cache performance
" How data structures are organized

" How data are accessed
- Nested loop structure
- Blocking is a general technique

+ All systems favor “cache-friendly code”

" Getting absolute optimum performance is very platform
specific
- Cache size, cache block size, associativity, etc.

—)
= Can get most of the advantage with generic code

- Keep working set reasonably small (temporal locality) 9V€&+ geﬁ@ral
 Use small strides (spatial locality) rales o thumly!
- Focus on inner loop code

25

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Core i7 Haswell
H 2.1 GHz
The Memory Mountain o
256 KB L2 cache
Aggressive - T 8 MB L3 cache

PfefoCh/ng ~ 64 B block size
S 16000
S
£ _ 14000
S
L2 12000
1 -
~§ 10000 LI $ gze exceeded
53
$E 8000 Ridges
© -
13 o 6000 = of temporal
" locality

4000 - v
L5 52¢ exceed ed
2000 £ - cede
Slopes .
. 0
/Of S’;.C;t'a/ s1 ek 32k
ocall
/ . 512k
s7 2m
Stride (x8 bytes) s9 m/ s(&’:&bpg)ddl sef side

m(veoS'r\j

26

WA UNIVERSITY of WASHINGTON L19: Caches IV CSE351, Spring 2019

Learning About Your Machine

<+ Linux:
= Iscpu
= |s /sys/devices/system/cpu/cpuO/cache/index0/
- Ex: cat /sys/devices/system/cpu/cpu0/cache/index*/size
+» Windows:
= wnic memcache get <query> (all valuesin KB)
= Ex: wmic memcache get MaxCacheSize

+» Modern processor specs: http://www.7-cpu.com/

27

