
CSE351, Spring 2019L18:  Caches III

Caches III
CSE 351 Spring 2019

Instructor:

Ruth Anderson

Teaching Assistants:

Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing 
Chin Yeoh

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/


CSE351, Spring 2019L18:  Caches III

Administrivia

 Lab 3, due Wednesday (5/15)

 Homework 4 , due Wed (5/22) (Structs, Caches)

2



CSE351, Spring 2019L18:  Caches III

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Direct-mapped (sets; index + tag)

 Associativity (ways)

 Replacement policy

 Handling writes

 Program optimizations that consider caches

3



CSE351, Spring 2019L18:  Caches III

Direct-Mapped Cache

 Hash function:  (block address) 
mod (# of blocks in cache)

 Each memory address maps to 
exactly one index in the cache

 Fast (and simpler) to find an 
address

4

Block Addr Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 00

01 11

10 01

11 01

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4



CSE351, Spring 2019L18:  Caches III

Direct-Mapped Cache Problem

 What happens if we access the 
following addresses?

 8, 24, 8, 24, 8, …?

 Conflict in cache (misses!)

 Rest of cache goes unused

 Solution?

5

Block Addr Block Data

00 00

00 01

00 10

00 11

01 00

01 01

01 10

01 11

10 00

10 01

10 10

10 11

11 00

11 01

11 10

11 11

Memory Cache

Index Tag Block Data

00 ??

01 ??

10

11 ??

Here 𝐾 = 4 B
and 𝐶/𝐾 = 4



CSE351, Spring 2019L18:  Caches III

Associativity

 What if we could store data in any place in the cache?
 More complicated hardware = more power consumed, slower

 So we combine the two ideas:
 Each address maps to exactly one set

 Each set can store block in more than one way

6

0

1

2

3

4

5

6

7

0

1

2

3

Set

0

1

Set

1-way:

8 sets,

1 block each

2-way:

4 sets,

2 blocks each

4-way:

2 sets,

4 blocks each

0

Set

8-way:

1 set,

8 blocks

direct mapped fully associative



CSE351, Spring 2019L18:  Caches III

Cache Organization (3)

 Associativity (𝐸):  # of ways for each set

 Such a cache is called an “𝐸-way set associative cache”

 We now index into cache sets, of which there are 𝑆 = 𝐶/𝐾/𝐸

 Use lowest log2 𝐶/𝐾/𝐸 = 𝒔 bits of block address
• Direct-mapped: 𝐸 = 1, so 𝒔 = log2 𝐶/𝐾 as we saw previously

• Fully associative: 𝐸 = 𝐶/𝐾, so 𝒔 = 0 bits

7

Decreasing associativity
Fully associative
(only one set)Direct mapped

(only one way)

Increasing associativity

Selects the setUsed for tag comparison Selects the byte from block

Tag (𝒕) Index (𝒔) Offset (𝒌)

Note: The textbook 
uses “b” for offset bits



CSE351, Spring 2019L18:  Caches III

Example Placement

 Where would data from address 0x1833 be placed?

 Binary:  0b 0001 1000 0011 0011

8

𝒔 = ? 

block size: 16 B
capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

Tag (𝒕) Offset (𝒌)𝒎-bit address: Index (𝒔)

𝒔 = log2 𝐶/𝐾/𝐸 𝒌 = log2 𝐾𝒕 = 𝒎–𝒔–𝒌

𝒔 = ? 𝒔 = ? 



CSE351, Spring 2019L18:  Caches III

Block Replacement

 Any empty block in the correct set may be used to store block

 If there are no empty blocks, which one should we replace?
 No choice for direct-mapped caches

 Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

9

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative



CSE351, Spring 2019L18:  Caches III

Peer Instruction Question

 We have a cache of size 2 KiB with block size of 128 B.  
If our cache has 2 sets, what is its associativity?

 Vote at http://pollev.com/rea

A. 2

B. 4

C. 8

D. 16

E. We’re lost…

 If addresses are 16 bits wide, how wide is the Tag 
field?

10

http://pollev.com/rea


CSE351, Spring 2019L18:  Caches III

General Cache Organization (𝑆, 𝐸, 𝐾)

11

𝐸 = blocks/lines per set

𝑆 = # sets
= 2𝒔

set

“line” (block plus
management bits)

0 1 2 K-1TagV

valid bit
𝐾 = bytes per block

Cache size:
𝐶 = 𝐾 × 𝐸 × 𝑆 data bytes
(doesn’t include V or Tag)



CSE351, Spring 2019L18:  Caches III

Notation Review

 We just introduced a lot of new variable names!

 Please be mindful of block size notation when you look at 
past exam questions or are watching videos

12

Variable This Quarter Formulas

Block size 𝐾 (𝐵 in book)

𝑀 = 2𝑚 ↔𝑚 = log2𝑀
𝑆 = 2𝒔 ↔ 𝒔 = log2 𝑆
𝐾 = 2𝒌 ↔𝒌 = log2𝐾

𝐶 = 𝐾 × 𝐸 × 𝑆
𝒔 = log2 𝐶/𝐾/𝐸
𝒎 = 𝒕 + 𝒔 + 𝒌

Cache size 𝐶

Associativity 𝐸

Number of Sets 𝑆

Address space 𝑀

Address width 𝒎

Tag field width 𝒕

Index field width 𝒔

Offset field width 𝒌 (𝒃 in book)



CSE351, Spring 2019L18:  Caches III

Example Cache Parameters Problem

 4 KiB address space, 125 cycles to go to memory.  
Fill in the following table:

13

Cache Size 256 B
Block Size 32 B

Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits

Index Bits
Offset Bits

AMAT



CSE351, Spring 2019L18:  Caches III

Cache Read

14

0 1 2 K-1tagv

𝒕 bits 𝒔 bits 𝒌 bits

Address of byte in memory:

tag set
index

block
offset

data begins at this offset

1) Locate set
2) Check if any line in set

is valid and has 
matching tag: hit

3) Locate data starting
at offset

valid bit

𝑆 = # sets
= 2𝒔

𝐸 = blocks/lines per set

𝐾 = bytes per block



CSE351, Spring 2019L18:  Caches III

Example:  Direct-Mapped Cache (𝐸 = 1)

15

Direct-mapped:  One line per set
Block Size 𝐾 = 8 B

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find set

𝑆 = 2𝒔 sets



CSE351, Spring 2019L18:  Caches III

Example:  Direct-Mapped Cache (𝐸 = 1)

16

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid?   +

block offset

Direct-mapped:  One line per set
Block Size 𝐾 = 8 B



CSE351, Spring 2019L18:  Caches III

Example:  Direct-Mapped Cache (𝐸 = 1)

17

𝒕 bits 0…01 100

Address of int:

0 1 2 7tagv 3 654

match?: yes = hitvalid?   +

int (4 B) is here

block offset

No match? Then old line gets evicted and replaced

This is why we 
want alignment!

Direct-mapped:  One line per set
Block Size 𝐾 = 8 B



CSE351, Spring 2019L18:  Caches III

Example:  Set-Associative Cache (𝐸 = 2)

18

𝒕 bits 0…01 100

Address of short int:

find set

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

2-way:  Two lines per set
Block Size 𝐾 = 8 B



CSE351, Spring 2019L18:  Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example:  Set-Associative Cache (𝐸 = 2)

19

𝒕 bits 0…01 100
compare both

valid?  + match: yes = hit

block offset

tag

2-way:  Two lines per set
Block Size 𝐾 = 8 B

Address of short int:



CSE351, Spring 2019L18:  Caches III

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

Example:  Set-Associative Cache (𝐸 = 2)

20

𝒕 bits 0…01 100

valid?  + match: yes = hit

block offset

short int (2 B) is here

No match?
• One line in set is selected for eviction and replacement
• Replacement policies: random, least recently used (LRU), …

compare both

Address of short int:
2-way:  Two lines per set
Block Size 𝐾 = 8 B



CSE351, Spring 2019L18:  Caches III

Types of Cache Misses: 3 C’s!

 Compulsory (cold) miss
 Occurs on first access to a block

 Conflict miss
 Conflict misses occur when the cache is large enough, but multiple data 

objects all map to the same slot

• e.g. referencing blocks 0, 8, 0, 8, ... could miss every time

 Direct-mapped caches have more conflict misses than
𝐸-way set-associative (where 𝐸 > 1)

 Capacity miss
 Occurs when the set of active cache blocks (the working set) 

is larger than the cache (just won’t fit, even if cache was fully-
associative)

 Note: Fully-associative only has Compulsory and Capacity misses

21



CSE351, Spring 2019L18:  Caches III

Example Code Analysis Problem

 Assuming the cache starts cold (all blocks invalid) and 
sum is stored in a register, calculate the miss rate:

 𝑚 = 12 bits, 𝐶 = 256 B, 𝐾 = 32 B, 𝐸 = 2

#define SIZE 8

long ar[SIZE][SIZE], sum = 0;  // &ar=0x800

for (int i = 0; i < SIZE; i++)

for (int j = 0; j < SIZE; j++)

sum += ar[i][j];

22



CSE351, Spring 2019L18:  Caches III

What about writes?

 Multiple copies of data exist:
 L1, L2, possibly L3, main memory

 What to do on a write-hit?
 Write-through: write immediately to next level

 Write-back: defer write to next level until line is evicted (replaced)

• Must track which cache lines have been modified (“dirty bit”)

 What to do on a write-miss?
 Write-allocate: (“fetch on write”) load into cache, update line in cache

• Good if more writes or reads to the location follow

 No-write-allocate: (“write around”) just write immediately to memory

 Typical caches:
 Write-back + Write-allocate, usually

 Write-through + No-write-allocate, occasionally

23


