YA UNIVERSITY of WASHINGTON

Caches Il

CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

Gavin Cai

Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

L18: Caches Il CSES351, Spring 2019

IM SORRY, WE(ANT APPROVE
THIS PERMIT: YOUR LAND ISNT
ZONED FOR GIANT-IMONEY-BIN

(ONSTRUCTION.
ALSO, YOUKE
e
),

https://what-if.xkcd.com/111/

https://what-if.xkcd.com/111/

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Administrivia

+» Lab 3, due Wednesday (5/15)
+» Homework 4 , due Wed (5/22) (Structs, Caches)

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Making memory accesses fast!

» Cache basics
» Principle of locality
» Memory hierarchies

+» Cache organization
" Direct-mapped (sets; index + tag)
= Associativity (ways)
= Replacement policy
= Handling writes

Program optimizations that consider caches

*

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Direct-Mapped Cache

Memory Cache
Block Addr Block Data Index Tag Block Data _
oojoof | | , | 00 [00 T
00j01 11 01 11 [Here K =4 B
oojrof [T T 10 [o1 1 1 | [[andC/K=4
00|11 L 11 o1 L.
01|00 I .
01(01 L :
oalig [Hash function: (block address)
R o] L mod (# of blocks in cache)
10{00Q| e
1oloxl [1 1 " Fach memory address maps to
o [. exactly one index in the cache
10j11
11/00| : : : = Fast (and simpler) to find an
1jorf | VT address
111100 [, 4
11|11 I

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Direct-Mapped Cache Problem

Memory Cache
Block Addr Block Data Index Tag Block Data
oofoof | ; | | 00 |22 T
0ojoL f 1 1 1 01 | r2° L 11 Here K =4 B
oofrof | ' I | 10 T — and C/K =4
oojl1af | |, , 11 |22 Lo
01|00 I .
1o » What h if th
01l10l T % dl Nappens It we access tnhe
R] L following addresses?
10{00Q| e
10[01 L1 = 8,248, 24,8, ..?
10|10 ol = o = i |
ol T Conflict in cache (misses!)
| | |
11fool | 1 1 i = Rest of cache goes unused
11forf [T T .
o [T + Solution?
1)y | oo

YA UNIVERSITY of WASHINGTON

NONUT A WDN-—=O

Associativity

L18: Caches il

CSE351, Spring 2019

+ What if we could store data in any place in the cache?

®= More complicated hardware = more power consumed, slower

« So we combine the two ideas:

" Each address maps to exactly one set

® Each set can store block in more than one way

1-way:
8 sets,
1 block each

direct mapped

Set

2-way:
4 sets,
2 blocks each

Set

4-way:
2 sets,
4 blocks each

Set

8-way:
1 set,
8 blocks

fully associative6

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Note: The textbook
uses “b” for offset bits

Cache Organization (3)

+ Associativity (E): # of ways for each set
® Such a cache is called an “E-way set associative cache”

= We now index into cache sets, of which thereare S = C/K/E
" Use lowestlog,(C/K/E) = s bits of block address

- Direct-mapped: E =1,sos =log,(C/K) as we saw previously

- Fully associative: E = C/K, so s =0 bits

Used for tag comparison Selects the set Selects the byte from block
I I I
Tag (1) Index (s) Offset (k)

— |ncreasing associativity

Decreasing associativity +— o
| Fully associative

Direct mapped | (only one set)
(only one way)

YA UNIVERSITY of WASHINGTON

L18: Caches il

Example Placement

CSE351, Spring 2019

block size: 16B
capacity: 8 blocks
address: 16 bits

+ Where would data from address 0x1833 be placed?

" Binary: Ob 0001 1000 0011 0011

=m-s-k s=log,(C/K/E) k-=1log,(K)

m-bit address: Tag (1) Index (s) Offset (k)
s§s=7 s=7 s=7
Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0 0
1
0
2 1
3
4 2
5
1
6 3
7

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Block Replacement

+» Any empty block in the correct set may be used to store block

+ If there are no empty blocks, which one should we replace?
® No choice for direct-mapped caches

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0 0
1
0
2 1
3
4 2
5
1
6 3
7

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Peer Instruction Question

+ We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?

= \/ote at http://pollev.com/rea
A.

a4
8
16

B.
C.
D.
E. We're lost...

+ If addresses are 16 bits wide, how wide is the Tag
field?

10

http://pollev.com/rea

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

General Cache Organization (S, E, K)

E = blocks/lines per set
A

e ~N
r —
o000
. (block plus
eoee management bits)
S = # sets < XXX
= 25
0 00000000 00OC0OCOGEOGOGOEOEOGOEOEOEONOEOOO TOFO
o000
\.
Cache size:
C =K X E XS data bytes
‘!vl Tag Of1f2]cee--e K-1 (doesn’t include V or Tag)
— v
valid bit Y

K = bytes per block

11

L18: Caches Il CSES351, Spring 2019

YA UNIVERSITY of WASHINGTON

Notation Review

+» We just introduced a lot of new variable names!

"= Please be mindful of block size notation when you look at
past exam questions or are watching videos

Block size K (B in book)
Cache size C
M=2"om=log, M
Associativity E S=2os=log,S
Number of Sets S K=2Fok=1log, K
Address space M
C=KXEXS
Address width m s = log,(C/K/E)
Tag field width m=:i+s+k
Index field width S

Offset field width k(b in book)

12

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example Cache Parameters Problem

+» 4 KiB address space, 125 cycles to go to memory.
Fill in the following table:

Cache Size 256 B
Block Size 32 B
Associativity 2-way
Hit Time 3 cycles

Miss Rate 20%
Tag Bits
Index Bits
Offset Bits
AMAT

13

YA UNIVERSITY of WASHINGTON

L18: Caches il

Cache Read

S = # sets <
= 25

E = blocks/lines per set

CSE351, Spring 2019

1) Locate set

2) Check if any line in set
is valid and has
matching tag: hit

- A 3) Locate data starting
at offset
[3 I J
Address of byte in memory:
eee & bits s bits | k bits
eee tag set block
index offset
o000
[3 I J
data begins at this offset
v tag OJ1]2] ccee K-1
o — v
valid bit M

K = bytes per block

14

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Block Size K =8 B

4 Address of int:

v tag ol1l213lalsle]7 ,

& bits 0..01 100
v tag ol1l213lalsle]7 ,
find set
S=255ets<
v tag ol1l213lalsle]7
[I I)

v tag ol1l213lalsle]7

\.

15

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
& bits 0..01 | 100

valid? + match?: yes = hit

v tag O1112)13141]5]16]7

block offset

16

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example: Direct-Mapped Cache (E =1)

Direct-mapped: One line per set
Block Size K =8 B

Address of int:
& bits 0..01 | 100

valid? + match?: yes = hit

v tag ol1]2]3|4]|5]6]|7
block offset
int (4 B) is here
(48] This is why we
want alignment!

No match? Then old line gets evicted and replaced

17

YA UNIVERSITY of WASHINGTON

L18: Caches Il

CSE351, Spring 2019

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set
Block Size K =8 B

Address of short int:

{3 bits 0..01 | 100
v] | g | [o]a]2]3 v] | tag 516]7
v] | tag | [ol1]2]3 vl | tag 5]6]7]| — find set
v] | g | [of1]2]3 vl | tae 5|67
o000
Y tag 0j1]12]3 v tag 51617

18

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K =8 B Address of short int:

G bits 0..01 | 100

compare both

valid? + | match: yes = hit

vV tag|01234567 vV tag 0111213145167} ——

block offset

19

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set

Block Size K =8 B Address of short int:

G bits 0..01 | 100

compare both

valid? + | match: yes = hit

vV tag 0111213145167 % tag 0112131415167} —

block offset

short int (2 B)is here

No match?
* Onelinein setis selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

20

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Types of Cache Misses: 3 C’s!

% Compulsory (cold) miss
= Qccurs on first access to a block
«» Conflict miss

® Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot
- e.g. referencing blocks 0, 8, 0, 8, ... could miss every time
= Direct-mapped caches have more conflict misses than
E-way set-associative (where E > 1)
« Capacity miss

= QOccurs when the set of active cache blocks (the working set)

is larger than the cache (just won’t fit, even if cache was fully-
associative)

" Note: Fully-associative only has Compulsory and Capacity misses

21

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

Example Code Analysis Problem

+» Assuming the cache starts cold (all blocks invalid) and
sum is stored in a register, calculate the miss rate:

" m=12bits, C =256B,K=328B,E =2

#define SIZE 8

long ar[SIZE][SIZE], sum = 0; // &ar=0x800
for (int i = 0; 1 < SIZE; i++)
for (int j = 0; Jj < SIZE; J++)

sum += ar[i][]J];

22

YA UNIVERSITY of WASHINGTON L18: Caches III CSE351, Spring 2019

What about writes?

‘0

Multiple copies of data exist:
= |1, L2, possibly L3, main memory

What to do on a write-hit?

= Write-through: write immediately to next level

‘0

= Write-back: defer write to next level until line is evicted (replaced)

-« Must track which cache lines have been modified (“dirty bit”)

‘0

What to do on a write-miss?
= Write-allocate: (“fetch on write”) load into cache, update line in cache
- Good if more writes or reads to the location follow

= No-write-allocate: (“write around”) just write immediately to memory

7/
*

Typical caches:
= Write-back + Write-allocate, usually
= Write-through + No-write-allocate, occasionally

23

