
CSE351, Spring 2019L16: Caches I

Caches I
CSE 351 Spring 2019

Instructor:

Ruth Anderson

Teaching Assistants:

Gavin Cai
Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

http://xkcd.com/1353/

Alt text: I looked at some of the data dumps from vulnerable sites, and
it was ... bad. I saw emails, passwords, password hints. SSL keys and
session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhäuser Gate. I should probably patch OpenSSL.

http://xkcd.com/1513/

CSE351, Spring 2019L16: Caches I

Administrivia

 Homework 3 due TONIGHT, Wednesday (5/8)

 Mid-quarter survey due Thursday (5/9)

 Lab 3, due Wednesday (5/15)

 Bring your laptops to section tomorrow!

 Download lab3 file and untar it before section

 Midterm Grading in progress, grades coming soon

 Solutions posted on website

 Rubric and grades will be found on Gradescope

 Regrade requests will be open for a short time after grade
release via Gradescope

2

CSE351, Spring 2019L16: Caches I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2019L16: Caches I

Aside: Units and Prefixes

 Here focusing on large numbers (exponents > 0)

 Note that 103 ≈ 210

 SI prefixes are ambiguous if base 10 or 2

 IEC prefixes are unambiguously base 2

4

CSE351, Spring 2019L16: Caches I

How to Remember?

 Will be given to you on Final reference sheet

 Mnemonics

 There unfortunately isn’t one well-accepted mnemonic
• But that shouldn’t stop you from trying to come with one!

 Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

 Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

 xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
• https://xkcd.com/992/

 Post your best on Piazza!

5

https://xkcd.com/992/

CSE351, Spring 2019L16: Caches I

How does execution time grow with SIZE?

6

int array[SIZE];

int sum = 0;

for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {

sum += array[j];

}

}

SIZE

Time

Plot

CSE351, Spring 2019L16: Caches I

Actual Data

7

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000 10000

SIZE

Ti
m

e

CSE351, Spring 2019L16: Caches I

Making memory accesses fast!

 Cache basics

 Principle of locality

 Memory hierarchies

 Cache organization

 Program optimizations that consider caches

8

CSE351, Spring 2019L16: Caches I

Processor-Memory Gap

9

Processor-Memory
Performance Gap
(grows 50%/year)

1989 first Intel CPU with cache on chip
1998 Pentium III has two cache levels on chip

“Moore’s Law”
µProc

55%/year
(2X/1.5yr)

DRAM
7%/year

(2X/10yrs)

CSE351, Spring 2019L16: Caches I

Problem: Processor-Memory Bottleneck

10

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time)

CSE351, Spring 2019L16: Caches I

Problem: Processor-Memory Bottleneck

11

Main
Memory

CPU Reg

Processor performance
doubled about
every 18 months Bus latency / bandwidth

evolved much slower

Core 2 Duo:
Can process at least
256 Bytes/cycle

Core 2 Duo:
Bandwidth
2 Bytes/cycle
Latency
100-200 cycles (30-60ns)

Solution: caches

Cache

cycle: single machine step (fixed-time)

CSE351, Spring 2019L16: Caches I

Cache 💰

 Pronunciation: “cash”

 We abbreviate this as “$”

 English: A hidden storage space
for provisions, weapons, and/or treasures

 Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/I$) or data (d-cache/D$)

 More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, I/O cache, etc.)

12

CSE351, Spring 2019L16: Caches I

General Cache Mechanics

13

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger, slower, cheaper memory.
• Viewed as partitioned into “blocks”

Data is copied in block-sized
transfer units

• Smaller, faster, more expensive
memory

• Caches a subset of the blocks

CSE351, Spring 2019L16: Caches I

General Cache Concepts: Hit

14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

Data is returned to CPU

CSE351, Spring 2019L16: Caches I

General Cache Concepts: Miss

15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memory

Request: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
•Replacement policy:

determines which block
gets evicted (victim)

Data is returned to CPU

CSE351, Spring 2019L16: Caches I

Why Caches Work

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

16

CSE351, Spring 2019L16: Caches I

Why Caches Work

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:

 Recently referenced items are likely
to be referenced again in the near future

17

block

CSE351, Spring 2019L16: Caches I

Why Caches Work

 Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

 Temporal locality:

 Recently referenced items are likely
to be referenced again in the near future

 Spatial locality:

 Items with nearby addresses tend
to be referenced close together in time

 How do caches take advantage of this?
18

block

block

CSE351, Spring 2019L16: Caches I

Example: Any Locality?

 Data:
 Temporal: sum referenced in each iteration

 Spatial: array a[] accessed in stride-1 pattern

 Instructions:

 Temporal: cycle through loop repeatedly

 Spatial: reference instructions in sequence

19

sum = 0;

for (i = 0; i < n; i++)

{

sum += a[i];

}

return sum;

CSE351, Spring 2019L16: Caches I

Locality Example #1

20

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

CSE351, Spring 2019L16: Caches I

Locality Example #1

21

Access Pattern:
stride = ?

M = 3, N=4

Note: 76 is just one possible starting address of array a

int sum_array_rows(int a[M][N])

{

int i, j, sum = 0;

for (i = 0; i < M; i++)

for (j = 0; j < N; j++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

1) a[0][0]

2) a[0][1]

3) a[0][2]

4) a[0][3]

5) a[1][0]

6) a[1][1]

7) a[1][2]

8) a[1][3]

9) a[2][0]

10) a[2][1]

11) a[2][2]

12) a[2][3]

CSE351, Spring 2019L16: Caches I

Locality Example #2

22

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

CSE351, Spring 2019L16: Caches I

Locality Example #2

23

int sum_array_cols(int a[M][N])

{

int i, j, sum = 0;

for (j = 0; j < N; j++)

for (i = 0; i < M; i++)

sum += a[i][j];

return sum;

}

76 92 108

Layout in Memory

a

[0]

[0]

a

[0]

[1]

a

[0]

[2]

a

[0]

[3]

a

[1]

[0]

a

[1]

[1]

a

[1]

[2]

a

[1]

[3]

a

[2]

[0]

a

[2]

[1]

a

[2]

[2]

a

[2]

[3]

M = 3, N=4

a[0][0] a[0][1] a[0][2] a[0][3]

a[1][0] a[1][1] a[1][2] a[1][3]

a[2][0] a[2][1] a[2][2] a[2][3]

Access Pattern:
stride = ?

1) a[0][0]

2) a[1][0]

3) a[2][0]

4) a[0][1]

5) a[1][1]

6) a[2][1]

7) a[0][2]

8) a[1][2]

9) a[2][2]

10) a[0][3]

11) a[1][3]

12) a[2][3]

CSE351, Spring 2019L16: Caches I

Locality Example #3

 What is wrong
with this code?

 How can it be
fixed?

24

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

a[2][0][0] a[2][0][1] a[2][0][2] a[2][0][3]

a[2][1][0] a[2][1][1] a[2][1][2] a[2][1][3]

a[2][2][0] a[2][2][1] a[2][2][2] a[2][2][3]

a[1][0][0] a[1][0][1] a[1][0][2] a[1][0][3]

a[1][1][0] a[1][1][1] a[1][1][2] a[1][1][3]

a[1][2][0] a[1][2][1] a[1][2][2] a[1][2][3]

a[0][0][0] a[0][0][1] a[0][0][2] a[0][0][3]

a[0][1][0] a[0][1][1] a[0][1][2] a[0][1][3]

a[0][2][0] a[0][2][1] a[0][2][2] a[0][2][3] m = 0
m = 1

m = 2

CSE351, Spring 2019L16: Caches I

Locality Example #3

25

⋅ ⋅ ⋅

int sum_array_3D(int a[M][N][L])

{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)

for (j = 0; j < L; j++)

for (k = 0; k < M; k++)

sum += a[k][i][j];

return sum;

}

 What is wrong
with this code?

 How can it be
fixed?

Layout in Memory (M = ?, N = 3, L = 4)

a

[0]
[0]
[0]

a

[0]
[0]
[1]

a

[0]
[0]
[2]

a

[0]
[0]
[3]

a

[0]
[1]
[0]

a

[0]
[1]
[1]

a

[0]
[1]
[2]

a

[0]
[1]
[3]

a

[0]
[2]
[0]

a

[0]
[2]
[1]

a

[0]
[2]
[2]

a

[0]
[2]
[3]

a

[1]
[0]
[0]

a

[1]
[0]
[1]

a

[1]
[0]
[2]

a

[1]
[0]
[3]

a

[1]
[1]
[0]

a

[1]
[1]
[1]

a

[1]
[1]
[2]

a

[1]
[1]
[3]

a

[1]
[2]
[0]

a

[1]
[2]
[1]

a

[1]
[2]
[2]

a

[1]
[2]
[3]

76 92 108 124 140 156 172

CSE351, Spring 2019L16: Caches I

Cache Performance Metrics

 Huge difference between a cache hit and a cache miss

 Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

 Miss Rate (MR)

 Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

 Hit Time (HT)

 Time to deliver a block in the cache to the processor
• Includes time to determine whether the block is in the cache

 Miss Penalty (MP)

 Additional time required because of a miss

26

CSE351, Spring 2019L16: Caches I

Cache Performance

 Two things hurt the performance of a cache:

 Miss rate and miss penalty

 Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty

(abbreviated AMAT = HT + MR × MP)

 99% hit rate twice as good as 97% hit rate!

 Assume HT of 1 clock cycle and MP of 100 clock cycles

 97%: AMAT =

 99%: AMAT =
27

CSE351, Spring 2019L16: Caches I

Peer Instruction Question

 Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

 Which improvement would be best?
 Vote at http://pollev.com/rea

A. 190 ps clock

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

28

http://pollev.com/rea

CSE351, Spring 2019L16: Caches I

Can we have more than one cache?

 Why would we want to do that?

 Avoid going to memory!

 Typical performance numbers:

 Miss Rate
• L1 MR = 3-10%

• L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.

 Hit Time
• L1 HT = 4 clock cycles

• L2 HT = 10 clock cycles

 Miss Penalty
• P = 50-200 cycles for missing in L2 & going to main memory

• Trend: increasing!

29

CSE351, Spring 2019L16: Caches I

An Example Memory Hierarchy

30

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 5.5 years

1 - 15 years

CSE351, Spring 2019L16: Caches I

Summary

 Memory Hierarchy

 Successively higher levels contain “most used” data from
lower levels

 Exploits temporal and spatial locality

 Caches are intermediate storage levels used to optimize
data transfers between any system elements with different
characteristics

 Cache Performance

 Ideal case: found in cache (hit)

 Bad case: not found in cache (miss), search in next level

 Average Memory Access Time (AMAT) = HT + MR × MP
• Hurt by Miss Rate and Miss Penalty

31

