WA UNIVERSITY of WASHINGTON

Caches |

CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

Gavin Cai

Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

HEARTBLEED MUST
BE THE \JORST WEB
SECURITY [APSE EVER.

WORST 50 FAR.
GIVE US TIME.

Pr

L16: Caches |

T MEAN, THIS BUG ISNT

Just BROKEMIIr ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY CONTENTS.

3

CSE351, Spring 2019

IT'S NOT JUST KEYS.
IT'S TRAFRC DATA.
EMAILS. PASSLIORDS.
EROTIC FANFACTION.

IS EVERYTHING
(DI"WD“I;SED?

WELL, THE ATTACK 1S
UMITED TO DATA SIORED
IN COMPUTER MEMORY.

50 PAPER 15 SAFE.
AND (LAY TP‘BLETS.

OUR IMAGINATIONS, ToO.
EELEILEEFNE

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and

it was ...

bad. | saw emails, passwords, password hints. SSL keys and

session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/




WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Administrivia

+» Homework 3 due TONIGHT, Wednesday (5/8)
+» Mid-quarter survey due Thursday (5/9)
+» Lab 3, due Wednesday (5/15)

= Bring your laptops to section tomorrow!
" Download lab3 file and untar it before section

+» Midterm Grading in progress, grades coming soon
= Solutions posted on website

= Rubric and grades will be found on Gradescope

= Regrade requests will be open for a short time after grade
release via Gradescope



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
—~ & Memory & caches
Assembly get_mpg:
language: pushg  %rbp

movq %rsp, %rbp

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:




WA UNIVERSITY of WASHINGTON

L16: Caches |

Aside: Units and Prefixes

or Disk, Comm

CSE351, Spring 2019

+» Here focusing on large numbers (exponents > 0)
» Note that 103 = 210

«+ Sl prefixes are ambiguous if base 10 or 2
- |EC prefixes are unambiguously base 2

cation; 2* for Memory)

\_./—\

/] SI Size Prefix Symbol \| IEC Size | Prefix
103 Kilo- K 210 le\)
10° Mega- M 220 Mebi-
10° Giga- G 230 Gibi-
10 Tera- s 230 Tebi-
1015 Peta- P 250 Pebi-
1072 Exa- E 260 Exbi-
1021 Zectta- Z 2790 Zebi-
10%4 Yotta- Y 280 Y obi-

\




WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

How to Remember?

+» Will be given to you on Final reference sheet

<« Mnemonics

There unfortunately isn’t one well-accepted mnemonic

« But that shouldn’t stop you from trying to come with one!
Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
. https://xkcd.com/992/

Post your best on Piazza!




WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

How does execution time grow with SIZE?

INt sum = 0O;

for (ant 1 = 0; 1 < 200000; 1++) {
for (Iint j ; ;
sum += arraylj}];

3




W UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Actual Data

45

40

35

30

25

Time

20

15

10

e

paw s € <
— 0 2000 4000 6000 8000 10000

‘ SIZE




WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Making memory accesses fast!

+» Cache basics

+ Principle of locality
+» Memory hierarchies
+» Cache organization

+» Program optimizations that consider caches



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Processor-Memory Gap

100,000
“Moore’s Law” 1§
R S ) WProc | e
1,000 55%/year
(2X/1.5yr) \
g L1080 T R L
o
E Processor, y
£ o IR S B Performance Gap
o (grows 50%/year)
'Iﬂ B | e e o S A e s T R e e | L S i s ] (e e e e i g e N e s ] L s
1 I I I I |
1980 1985 1990 1995 2000 2005
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Il has two cache levels on chip (2X/10yrs)




WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Problem: Processor-Memory Bottleneck

&M(lf@v B%Z\FCK

Processor performance

doubled about _
every 18 months Bus latency / bandwidth

evolved much slower

Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth SO v, Ok
256 Bytes/cycle 2 Bytes/cycle et

Lat
! 100-200 cycles (B0-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time) 10



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus latency / bandwidth
evolved much slower

|

Main

CPU | Reg Cache M
emory

Core 2 Duo: Core 2 Duo: ' ¥ OME DAY SALE 7
Can process at least Bandwidth e !
256 Bytes/cycle 2 Bytes/cycle T
Latency
5(,ndw‘\d\ 100-200 cycles (30-60ns)
o moith

grocery store

Solution: caches

cycle: single machine step (fixed-time) 11



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Cache &

+ Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

" More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0O cache, etc.)

12



WA UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Spring 2019

General Cache Mechanics

Cache

U\Sin3
,o loc|< NUAMS

(not dota) ‘W

Memory

Smaller, faster, more expensive
memory
Caches a subset of the blocks

* Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”

7 9 14 3
—j Data is copied in|block-sized
transfer units
— N\
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

13



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

General Cache Concepts: Hit @

A cpv
O |
@ Request: 14 Q)Data in block 51 is needed
(£
il Block b is in cache:
Cache 7 & E Hit]
@Data is returned to CPU
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
000000000000 OCGOGO®OGOO

14



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

General Cachef\gycepts: Miss @

O
2 . .
Request: 12 (D Data in block b is needed
U
Cach - 5 12 3 Block b is not in cache:
ache Miss!
N
O Block b is fetched from
@) 12 Request: 12 ©)
memory
(9 Block b is stored in cache
Memory 0 1 2 3 * Placement policy:
4 5 6 7 determines where b goes
* Replacement policy:
8 9 10 11
determines which block
12 13 14 15 gets evicted (victim)

@Data is returned to CPU

15



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Why Caches Work

+» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently -

16



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently Q

+ Temporal locality: block

= Recently referenced items are likely
to be referenced again in the near future

17



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses@ or equal to those they have used

ecently J
2 Tempmcy: block

= Recently referenced items are likely
to be referenced again in the near future ﬂ

« Spatial locality: block

" |tems with nearby addresses tend
to be referenced close together in time

+ How do caches take advantage of this?

18



WA UNIVERSITY of WASHINGTON

L16: Caches | CSE351, Spring 2019

Example: Any Locality?

sum = 0O;
for (1 = 0;\0 <
{

sum += afi];

}

return sum;

ng 1++)

<« Data:
" Temporal:
= Spatial:

« Instructions:

" Temporal:
= Spatial:

sum referenced in each iteration
array a[ ] accessed in stride-1 pattern

cycle through loop repeatedly
reference instructions in sequence

19



WA UNIVERSITY of WASHINGTON L16: Caches |

Locality Example #1

Iint sum_array_rows(int a[M][%J

{ L

int 1, jJ, sum = 0;

Fows

return sum;

for (1 = 0; 1 < M; 1++)
for (J = 0; J < N; J++
sum += a[i]ll[i]l:

)

Co\s

)

CSE351, Spring 2019

20



WA UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #1
int sum_array_rows(int a[M][N])\
{ co\'s
int i, j, sum = O; Lr“”
for (i = O’ 1 < M; i++)
for (43 = 0; j < N; j++)
m += a[i][j]
a C3) 138)
return sum o
} QO v

CSE351, Spring 2019

Layou;.'{n Memory

A alalalalala|a]a
[0] (11011 [1]|[1])[2]| 21| [2]([2]
[31|[01|[1]|[2]1|[3]|[O]|[1]|[2]|[3]

1\/'\!\ ~ \f\V |
92 108

—_—

Note: 76 is just one possible starting address of array a

M=3,N=4
a[0][0] ||a[O][1] | | alO][2] | |alO][3]
a[1][0] ||al1][1] ||a[1][2]| |al1][3]
a[2][0]||al2][1] || al2][2] | | al2][3]
Access Pattern: 1)| a[0][0]
stride =7 2)| a[0][1]
3)| al01[2]
“5*W&T>,ll’ Dl a[0][3]
A+ = 4B 5)| al11l0]
6)| a[11[1]
)| al11l2]
8) al11l[3]
9)| al2110]
10)| a[2]1[1]
11)| a[2]112]
12)| al2]1[3]

21



WA UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #2

sum += a[il[il;
50 0
return sum;

int sum_array_cols(int a[M][ND)
{ [
int i, j, sum = O; rows
for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

CSE351, Spring 2019

22



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Locality Example #2
int sum_array_cols(int a[M] [N]) M =3,N=
t L, et [aonol|[aoi] [aton21] [ao))

int 1, jJ, sum = 0;
a[1][0] || a[1][1]||all][2]||all][3]

for (J = 0; J < Nj; j++
0 1(=(l)r ((i)’zjo; i’<JM;)i++) a[2][0] ||al2][1] || al2][2]| |al2][3]

sum += a[i1]lli1l;
O
l

Access Pattern: 1)| a[0][0]

return sum; stride =7 2)| a[1][0]
¥ 3)[a[21[0]
hede oy Halolli]

Layo/ut_mMe\mory sHvrde = 1) 5)( al1]l1]
a

6) a[2][1]
(]/ [0] [0]
[11][2]

O <

> [g] [g] 7| a[o1[2]
[21|[31] 8)| a[1]1[2]
9)| a[2][2]
10)| a[0][3]
11)| a[1][3]
12)| a[2][3]

23



WA UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #3

/- ~ cols

CSE351, Spring 2019

int sum_array_ 3D(iInt a[M][Nl[ﬁ])
{ grrJ‘S
O;

int i, j,

k, sum

for (1 = O;
for (g

I < N; 1++)
= 0; J <L; j++)

+» What is wrong
with this code?

for (k = 0; k < M; k++) | & How can it be
sum += a[k][i]1L[}i]; .
6 U o fixed?
return sum; (L O O
b5
( a[2][0]10]11a[2][0][1]] [a[2]1[0]1[2]] [a[2][O][3]
( |a[1][0' [O1Ha[1][0][11Ha[1][0][2]Hal[1][0][3]
[0]0][0){{al0][0][1]{a[0][0][2]{al0][0] (3] ;{;;”3]
a[0][1][0]fa[0][1][1]Ba[0][1][2]a[0][1](3] i8] <——m = 2
| L] & lUJIIalJ-JlL]lJ-JI IalJ-JlL]lLJI IalJ-JlL][B] hm - 1
a[0][2][0][|al0][2][1][]a[0][2][2][lal0][2][3][<—m = 0

24



CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON L16: Caches |

Locality Example #3

/-m\j-sr.,\;
Ent sum_array_3D(int a[l\iéI—]SIES]S,[L]) + What is wrong
int i, j, k, sum = 0O; with this code?

for (i = 0; 1 < N; i++) Stride - N*L
for ( =0; jJ <L; j++)
for (k = 0; k < M; k&) | & How can it be

sum += a[k][i] ,
S fixed?
return sum; (L O innec loop: 1= cride-

. K= stride-N¥L
Layout in Memory (M =?,N=3,L=4)
pr——— l<\
a a a a a a a a a a } a a a a a a a a a a a a
(01| (01 | 101{ o1 | o1 | to1 | 01 { 101 | to1 | ro1 frarff x| a3 | cad fay | ean ey | ey | fen e fenf L,

[O] ([0 | [1]{[1]{[2]{[2]{[2] (2] (2] (2] §[O]/f [O] | (O] (O] ([1]|[L]{[L]|[L]|[2]{[2]{[2][[2]
[2] [ [3] | [O] | [1][[2] (3] (O] |[1]([2] (3]} [OYf[1]|[2][3]([O]([1]|[2][3]([O]{[1]{[2][[3]

| l | T ] | |
7@ 92 108 124 140 156 172
/W \\_/W
o\ O ric 1
6 9 25



2019

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring

] ZvCPU\ Hil fales HT
Cache Performance Metrics oo ) o by sk

/"\em :

» Huge difference between a cache hit and a cache miss

12
" Could be 100x speed difference between accessing cache

and main memory (measured in clock cycles)
% Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

» Hit Time (HT)

" Time to deliver a block in the cache to the processor

« Includes time to determine whether the block is in the cache

» Miss Penalty (MP)

= Additional time required because of a miss

26



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Cache Performance

+» Two things hurt the performance of a cache:

"= Miss rate and miss penalty

+» Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT # Hit time + Miss rate x Miss penalty
(abbrevia MAT = HT + MR x MP) ¥R + MR

HT*(FMR) 4 (HT+MPD* MR
HT- PR+ B R+ MR

+» 99% hit rate twice as good as 97% hit rate!
" Assume HT of 1 clock cycle and MP of 100 clock cycles
" 97%: Ammoloo = Y clock cueles
= 99%: AMAT= | + 001100 = 7 clck cycles

27



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Peer Instruction Question /

| clod~c 90 &5
= Processor specs: 200 ps cIock), MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT = U7+ mR-m P = |+ 0.0 béo :

L =100 ps
+» Which improvement would be best? P
= Vote at http://pollev.com/rea

A.

~—

(jops = 2¥OPs
B. Miss penalty of 40 clock cycles Jocl
|+ 0.62 {40 R §7C\45 —7 Zéépi

C. MR of misses/instruction .\,
O | +§._J5E 50 = .75 Srs” 3PS

28



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Can we have more than one cache?

« Why would we want to do that? ¢ i ize 11 4 4t 0T
= Avoid going to memory! O optimize L1 A low MR

+ Typical performance numbers:

" Miss Rate

« L1 MR =3-10%

« L2 MR = Quite small (e.g.é 1%), depending on parameters, etc.
" Hit Time o

« L1 HT =4 clock cycles

« L2 HT =10 clock cycles

" Miss Penalty
« P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

29



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

An Example Memory Hierarchy

A
<1 ns 5-10 s a
reglsters

1ns on- ch|

Smaller, cache (SRAM)
faster,
costlier 5-10ns off.chip(2 )
per by cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper

er byte 150,000 ns SSD 31 days
per by local secondary storage

10'022'0(30 ns Disk (local disks 66 months = 5.5 years
ms
1-150 ms remote secondary storage
(distributed file systems, web servers)

1-15years

30



WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2019

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

" Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
= |deal case: found in cache (hit)
= Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

31



