YW UNIVERSITY of WASHINGTON

Structs & A

CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

L14: Structs & Alignment

lighment

CSE351, Spring 2019

Gavin Cai

Jack Eggleston
John Feltrup
Britt Henderson
Richard Jiang
Jack Skalitzky
Sophie Tian
Connie Wang
Sam Wolfson
Casey Xing
Chin Yeoh

MAN, YOURE BEING IN(ONSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, SOME FRom ZERD.

DIFFERENT TASKs CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGOR ITHMS
EXPERT DONALD KNUTH,

“WHO ARE You? How DID.
YOU GET IN MY HOUSE?
/

WAIT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

/ .

http://xked.com/163/

http://xkcd.com/163/

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Administrivia

+ Lab 2 (x86-64) due TONIGHT (5/01)
+» Homework 3, due Wednesday (5/8)

" On midterm material, but due after the midterm

+» Midterm (Fri 5/03, 4:30-5:30pm in KNE 130)
" Review Session: Thurs 5/02,6:30-8:30pm in Sieg 134
= No lecture on Friday 5/03

= Ruth will hold office hours instead
« Fri11:30am-12:30pm in CSE 460
« Fri 2:30-3:30pm in CSE 460

YA UNIVERSITY of WASHINGTON

Roadmap

L14: Structs & Alignment

CSE351, Spring 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car{():; Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
—y tz Memory & caches
Assembly c_wfet_mpc_illz1] Processes
. pushqg srbp .

language: movq srsp, $rbp Virtual memory

- Memory allocation

popgq srbp Javavs. C

ret ¢,
Machine 0111010000011000 \/

de: 100011010000010000000010 A \
coae. 1000100111000010 A
110000011111101000011111 Windows 10 0sx Yosemie s
i |
V vV

Computer

system:

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Assembly Programmer’s View

CPU Addresses Memory
Srip : Stack
) Data ‘ 1
i Instructions Dynamic Data 1
SF|OF) (Heap)
» Programmer-visible state SEHEREE
= PC: the Program Counter (3rip in x86-64) Literals
« Address of next instruction Instructions
"= Named registers
- Together in “register file” + Memory
- Heavily used program data = Byte-addressable array
= Condition codes " Code and user data
« Store status information about most recent " |ncludes the Stack (for

arithmetic operation supporting procedures)

« Used for conditional branching

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

X86-64 Instructions

» Data movement

® mov, movs, movz,

« Arithmetic

" add, sub, shl, sar, lea,

+» Control flow

" cmp, test, J*, set¥,

+ Stack/procedures
" push, pop, call, ret,

CSE351, Spring 2019

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Turning C into Object Code

Codeinfiles pl.c p2.c

Compile with command: gcc -Og pl.c p2.c -0 p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting machine code in file p

text C program (pl.c p2.c)

Compiler (gcc -0Og -95)

A\ 4

text Asm program (pl.s p2.s)

Assembler (gcc —-c oras)

y

binary | Object program (pl.o p2.0) Static libraries (. a)

Linker (gcc or V

binary Executable program (p)

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Assembling

Executable has addresses

OOOOOOOOOO4004f6 <pcount r>:

4004f6: b8 00 00 00 0O0 mov $0x0, seax

4004fb: 48 85 ff test srdi, srdi

4004fe: 74 13 je 400513 <pcount r+0xl1d>
3 400500: 53 push srbx
g 400501: 48 89 fb mov srdi, $rbx
3 400504: 48 dl ef shr srdi
=3 400507: e8 ea ff ff ff callg 4004£f6 <pcount r>
g 40050c: 83 e3 01 and $0x1,%ebx

40050f: 48 01 d8 add srbx, srax

400512: 5b pop sSrbx

400513: £3 c3 rep ret

gcc —g pcount.c —o pcount

" objdump —-d pcount

A Picture of Memory (64-bit view)

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment

00000000004004f6 <pcount r>:

4004f6: b8 00 00 00 OO mov $0x0, $eax

4004fb: 48 85 ff test $rdi, srdi

4004fe: 74 13 je 400513 <pcount r+0x1d>

400500: 53 push $rbx

400501: 48 89 fb mov Srdi, 3rbx

400504: 48 dl ef shr Srdi

400507: e8 ea ff ff ff callg 4004f6 <pcount r>

40050c: 83 e3 01 and $0x1, $ebx

40050f: 48 01 d8 add Srbx, %rax

400512: b5b pPop srbx

400513: rep ret
018 119 2Ja 3|lb 4|c 5]d 6le 7I|f

b8 00

00 00 00 48 85 ff 74 13
53 48 89 fb 48 dl ef e8
ea ff £ff £ff 83 e3 01 48
01 ds 5b

CSE351, Spring 2019

0x00
0x08
0x10

0x4004f£0
0x4004£8
0x400500
0x400508
0x400510

YA UNIVERSITY of WASHINGTON

Roadmap

L14: Structs & Alignment

CSE351, Spring 2019

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car{():; Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); Cc.getMPG () ; Arrays & structs
— - — Memory & caches
Assembly c_wfet_mpc_illz1] Processes
. pushqg srbp .
language: movq srsp, $rbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret *
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Peer Instruction Question

+» Which of the following statements is FALSE?
= \/ote at http://pollev.com/rea

int sea([4][5]; |9(8|1|9(5|/9(8|1({0|5]|]9(8|1({0|3]|]9|8|1(1|5

76 96 116 136 156
A.

B. sea[l][1] makes two memory accesses

C. sea[2] [1] will always be a higher address
than sea[1l] [2]

D. sea[2] is calculated using only 1lea
E. We're lost...

10

http://pollev.com/rea

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Data Structures in Assembly

« Arrays
" One-dimensional
" Multi-dimensional (nested)
= Multi-level

+» Structs
= Alignment

11

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structs in C

+» Way of defining compound data types
+ A structured group of variables, possibly including other structs

typedef struct {

int lengthInSeconds; typedef struct {
int yearRecorded; int lengthlInSeconds;
) Song . int yearRecorded;
' } Song;
Song songl;
rsung1
songl.lengthInSeconds = 213; —®| lengthInSeconds: 213
songl.yearRecorded = 1994; yearRecorded: 1994
Song song2; rsmmE
—®| lengthInSeconds: 248
song2.lengthInSeconds = 248; yearRecorded: 1988

songZ.yearRecorded = 1988;

12

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Struct Definitions

« Structure definition:
struct name {

" Does NOT declare a variable /* fields */
" Variable type is “struct name” b7 <
-~ pointer —— Easy to forget
struct name namel, *55, name ar[3]; semicolon!
— W
o~ array

+ Joint struct definition and typedef

" Don’t need to give struct a name in this case

struct nm { typedef struct {
/* fields */ /* fields */

b ' } name;

typedef struct nm name; name nl;

name nl;

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?
- Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |«<— Size = bytes | struct rec {
int ar[4]; int a[4];
long d; long 1i;
}; struct rec* next;
Size = bytes—— | };

+» Almost always define structs in global scope near the
top of your Cfile

= Struct definitions follow normal rules of scope

14

CSE351, Spring 2019

L14: Structs & Alignment

YW UNIVERSITY of WASHINGTON

Accessing Structure Members

+ Given a struct instance, access

member using the . operator: |struct rec {
int a[4];
struct rec rl; long i;
rl.i = val; struct rec *next;
+ Given a pointer to a struct: &
struct rec *r;
r = &rl; // or malloc space for r to point to
We have two options:
- Use * and . operators: (*r).i = val;
- Use —> operator for short: r->1 = wval;

+» In assembly: register holds address of the first byte

= Access members with offsets

15

CSE351, Spring 2019

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

class Record { ... }

java Side'nOte Record x = new Record() ;

+ An instance of a class is like a pointer to a struct

containing the fields
= (Ignoring methods and subclassing for now)
" SoJava’s x.f islikeCs x—>f or (*x) .f

+ In Java, almost everything is a pointer (“reference”) to

an object
= Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is < 8 bytes (but can point to
lots of data)

16

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structure Representation

struct rec { r
int af4];
long 1i;
struct rec *next; a 1 next
b} o*r;
0 16 24 32

+ Characteristics
= Contiguously-allocated region of memory
= Refer to members within structure by names
"= Members may be of different types

17

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structure Representation

struct rec { r
int af4];
long 1i;
struct rec *next; a 1 next
bo*r;
0 16 24 32

% Structure represented as block of memory
= Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

= Machine-level program has no understanding of the
structures in the source code

18

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {

int af[4];

long 1i;

struct rec *next;
} *r;

+» Compiler knows the
offset of each member
within a struct

" Compute as
*(r+offset)
- Referring to absolute

offset, so no pointer
arithmetic

r—->1

next

16 24 32

long get 1i(struct rec *r)

{

return r—>i;

}

r in %rdi, index 1in %rsi

movq 16 (3rdi), S%Srax
ret

CSE351, Spring 2019

19

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2019

Exercise: Pointer to Structure Member

struct rec { r
int af4];
long 1i; M
struct rec *next; a 1 next
b} o*r;
0 16 24 32

long* addr of 1 (struct rec *r)

{

r in %rdi

return & (r->next);

}

o
, $rax
return & (r->1); r o
} ret
struct rec** addr of next (struct rec *r) # r 1in 3%rdi
{
, srax

ret

20

YW UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Generating Pointer to Array Element

struct rec {

int af[4];

long 1i;

struct rec *next;
} *r;

+» Generating Pointer to
Array Element

= Offset of each structure
member determined at
compile time

" Compute as:
r+4*index

r r+4*index
a i next
0 16 24 32

CSE351, Spring 2019

int* find addr of array elem
(struct rec *r, long index)

{

return &r—->a[index];

} N\

p|
& (r—->al[index])

r 1n %rdi, index 1n $%rsi
leaq (%rdi,%rsi,4), S%Srax

ret

21

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Review: Memory Alighment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types:

1 char No restrictions
2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

22

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Alignment Principles

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries
- Virtual memory trickier when value spans 2 pages (more on this later)

®" Though x86-64 hardware will work regardless of alignment of
data

23

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structures & Alignment

» Unaligned Data SBESE £
char c;
C 1[0] 1[1] A int 1[2];
p ptl p+5 p+9 p+17 double v;
o Yee

+ Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

C 1[0] 1[1] \Y%

p+0 p‘+4\ p+8 p+16 p+24
Multiple ofo Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8

24

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Satisfying Alignment with Structures (1)

+ Within structure: sremmeEie Bl
_ S . char c;
" Must satisfy each element’s alignment requirement Ss 20
+» Overall structure placement double v;
: : b *p;
= Each structure has alighment requirement K.« P
« Kiax = Largest alignment of any element
« Counts array elements individually as elements
+» Example:
K ax =8, due to double element
C 1[0] 1[1] v
p+0 Ok4 p+8 p+16 p+24

Multiple ofo Multiple of 8

Multiple of 8 internal fragmentation s

YA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2019

Satisfying Alignment with Structures (2)

«» Can find offset of individual fields St;u:i;lSZ {
. O e VvV,
using offsetof () T
" Needto #include <stddef.h> char c;
= Example: offsetof (struct S2,c) returns16 |} *P/

+ For largest alignment requirement K, ,«,
overall structure size must be multiple of Ky,

= Compiler will add padding at end of
structure to meet overall structure
alignment requirement

\V4 1[0] 1[1] C
p+0 p+8 pt+16 pt24

a

Multiple of 8 external fragmentation Multipleof8

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Arrays of Structures

= Overall structure length multiple of K, |St=uct 52

double v;
+ Satisfy alignment requirement i}f:t if21;
. char Cy;
for every element in array \ a[10];
al0] alll] al2] o o o
a+0 a+24 a+48 a+72

a+24 a+32 a+40 /‘ a+48

external fragmentation
27

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= Qverall struct must be aligned according to largest field

" Total struct size must be multiple of its alignment
(may insert padding)
- sizeof should be used to get true size of structs

28

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i;
int i; - char c;
char d; char d;
| B oF | oF
C 1 d 1 cld

Y Y
12 bytes 8 bytes

29

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Vote on sizeof(struct old):

Peer Instruction Question htto://pollev.com/rea

+» Minimize the size of the struct by re-ordering the vars

struct old { struct new {
int 1i; int i;

short s[3];

’

float f; ;
I g ¥

+» What are the old and new sizes of the struct?

sizeof(structold) = sizeof(struct new) =
A.
B. 22bytes
C. 28 bytes
D. 32bytes
E. We'relost...

30

http://pollev.com/rea

YW UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement
« Structures

= Allocate bytes in order declared
"= Padin middle and at end to satisfy alignment

31

