WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Structs & Alignment

CSE 351 Spring 2019

Instructor:
Ruth Anderson

Teaching Assistants:

CSE351, Spring 2019

Gavin Cai MAN, YOURE BEING IN(ONSISTENT
Jack Eggleston WITH YOUR ARRAY INDICES. SOME
John Feltrup ARE FRom ONE, SOME From ZERD.

' DIFFERENT TASKs CAWL FOR
Britt Henderson DIFFERENT CONVENTIONS. TO
Richard Jiang QUoTE srm;:ro ALGOR ITHMS
Jack Skalitzky EXPERT DONALD KNUTH,

"WHO ARE You? HOw DID

Sophie Tian YOU GET IN MY HOUSE?"
Connie Wang . /

Sam Wolfson : :

Casey Xing

Chin Yeoh

VAT WHAT?

WELL, THATS WHAT HE
SAID WHEN | ASKED
Him ABOUT IT.

/ :

http://xked.com/163/

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Administrivia

+ Lab 2 (x86-64) due TONIGHT (5/01)
+» Homework 3, due Wednesday (5/8)

" On midterm material, but due after the midterm

+» Midterm (Fri 5/03, 4:30-5:30pm in KNE 130) -
| ™ Review Session: Thurs: 6:30-8:30pm in Sieg 134
= No lecture on Friday 5/03

= Ruth will hold office hours instead
« Fri 11:30am-12:30pm in CSE 460
« Fri 2:30-3:30pm in CSE 460

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

CSE351, Spring 2019

Roadmap
C: Java:
car *c = malloc(sizeof(car)); | |[Car c = new Car();
c->miles = 100; c.setMiles(100); x86 assembly
c->gals = 17; c.setGals(17); Procedures & stacks
float mpg = get _mpg(c); float mpg = Executables
free(c); c.getMPGQ);

—— —
Assembly get_mpg:

. pushqg %rbp

language: mov(q %rsp, %rbp

éééq %rbp

ret *
Machine 0111010000011000 \/

de: 100011010000010000000010 A
COdE: 1000100111000010 {
110000011111101000011111 Windows 10 05 X Yosermire s
' |
A 4 v

Computer

system:

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Assembly Programmer’s View

CPU Memory | &
general purpose resistes | Addresses |
()Cno) éyf((\f»;\: %ri D 7T ax Tge e > o _t_a_c!(_
condiir| [CF]ZF ‘ o 1) g
odes | Jetem __Instructions Dynamic Data e
(Heap))
+ Programmer-visible state Sz el g
= PC: the Program Counter (%rip in x86-64) Literals ‘,> “g"%
- Address of next instruction O\'%Ioris:t.ructions)
= Named registers L boer aor
- Together in “register file” + Memory
- Heavily used program data = Byte-addressable array
= Condition codes = Code and user data
- Store status information about most recent = |ncludes the Stack (for

arithmetic operation supporting procedures)

- Used for conditional branching

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

s spedien: b0 q
/) H) By’*ej

X86-64 Instructions 1, 2
L« Data movement
" MOV, MOVS, MOVZ, ... operand Hypes LM 3
Rej 070
()« Arithmetic Mem ()

= add, sub, shl, sar, lea, ... |
Labels ave addresses

«» Control flow
= cmp, test, jJ*, set*, ...

2% Stack/procedures
= push, pop, call, ret, ...

L14: Structs & Alignment CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON

Turning C into Object Code

+ Codeinfiles pl.c p2.c
+~ Compile with command: gcc -0g pl.c p2.c -0 p
= Use basic optimizations (-0g) [New to recent versions of GCC]

= Put resulting machine code in file p

© dalatypes text C program (p1.c p2.c)
(Compiler (gcc —0g -S)
- :

& labels

A

text Asm program (pl.s p2.s)

@ muchine A€ A 3
lo\\,,e\s 9o n ')fﬁlz\é’s —SY‘V\l\Dl/rf’lo(a“\'bf\ A

ssembler (QCC -C or as
Q’) haemory setivns ((doj?x/,“fex‘i’) d (g)
binary | Object program (pl.0 p2.0) Static libraries (-a)

firalize addveyes]
fe.)b‘\.e ré'((’fenccs N 1 Llnker (gCC or V

binary Executable program (p)

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Assembling

CSE351, Spring 2019

» Executable has addresses (no mor labels)

[00000000004004F6 <pcount r>:
4004F6- b8 00 00 00 00 mov $0x0 , %eax
4004fb: 48 85 ff test %rdi,%rdi
4004fe: 74 13 400513 <pcount_r+0x1d>
) 400500: 53 %rbx
A 400501: 48 89 fb %rdi ,%rbx
S 400504: 48 d1 ef %rdi
=2 400507: €8 ea ff ff ff 40046 <pcount_r>
o 40050c: 83 e3 01 $0x1 , %ebx
wsed ho be « 40050F: 48 01 d8 add %rbx ,%rax
labe | 400512: A 5b pop %Irbx
(Exd: o L{,) >400513: f3 ¢ rep ret

L P(D\»W+_(+0x\& = 0 b‘f"ﬂ Kﬂa Stert 5‘ Pcs\m’\'_r

" gcc -g pcount.c —0 pcount
= objdump —d pcount

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

A Picture of Memory (64-bit view)

00000000004004f6 <pcount_r>:
4004f6: Th8 00 00 00 O mov $0x0,%eax
4004fb: (48 85 Tf test %rdi,%rdi
4004fe: 74 13 je 400513 <pcount_r+0x1d>
400500: 53 push %rbx
400501: 48 89 fb mov %rdi,%rbx
400504: 48 di1 ef shr %rdi
400507: e8 ea ff ff ff callg 4004f6 <pcount_r>
40050c: 83 e3 01 and $0x1 ,%ebx
40050f: 48 01 d8 add %rbx,%rax
400512: b5b pop %rbx
400513: rep ret
L)\ \v;,——__,/ P y
wwhldmw b rod Ew*@s O]8 1|9 2]Ja 3|b 4]Jc 5]d 6]Je 7]|Ff
64 resses 0x00
0x08
0x10
| bl | 00 | ox4004f0
unalign ed,, bt 00 | 00 | 00 |"@8)| 85 | FF | 74 | 13 | 0x4004F8
More (0"\(36\51' 53 | 48 | 89 | fb | 48 | d1 | ef | e8 | 0x400500
ea 1 r r 83 e3 01 48 | 0x400508
01 d8 5b 0x400510

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);

c->miles = 100; c.setMiles(100);

c->gals = 17; c.setGals(17);

float mpg = get mpg(c); float mpg =

free(c); C.getMPG(); Arrays & structs
—— —

Assembly get_mpg:

language: pushq %rbp

movq %rsp, %rbp

popq %rbp

ret .
Machine 0111010000011000 \/
de: 100011010000010000000010 X
COQE. 1000100111000010 A
110000011111101000011111 Windows 10 osx vomemie eler

i [|
v v

Computer

system:

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

0 1V 234
S 6F g4
lo WILID Iy

Peer Instruction Question

oL —w\a:) o

+» Which of the following statements it

= \/ote at http://pollev.com/rea
QU 0]

int sea[4][5]; |9|8|1]|9|5]|9|@8|1|0|5|9|8|1|0[3]|9(8|1(1|5

O 136 0 156

Sca["ﬂ

(6
sea[b) —

\(GS) fe'l'urr\j \

—~

|B. seal ITT 1] makes two memory accesses|

No, 0"\‘\‘1 SN ‘|e memovry aL(CS)H

C. seal2][1] will always be a higher address
than Sea[l] [2] \(?5, becase C is FOw-) OF

D. sea| 2] is calculated using only lea
Mes y ses2) reluns addvess oF OMNOY rouy
E. We're lost...

10

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Data Structures in Assembly

< Arrays
" One-dimensional
" Multi-dimensional (nested)
" Multi-level

+ Structs
= Alignment

11

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structs in C

+» Way of defining compound data types
+ A structured group of variables, possibly including other structs

typedef struct {

/,,/;Dint lengthlInSeconds; typedef struct {
= int yearReCOFded; int lengthInSeconds;
] } Song - int yearRecorded;
’ } Song;
Song songl;
_) song 1
songl. lengthlnSeconds = 213; L% engthInseconds: 213
songl.yearRecorded = 1994; yearRecorded: 1994
Song song2; song2
—®| lengthInSeconds: 248
Son92 - Iength InSeconds = 248) yvearRecorded: 1988

song2.yearRecorded = 1988;

12

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

‘}\/r(o\é Unsfghea Iong int U\l‘\ -

\/wr-/)

Struct Definitions e reerame
. « e e . “—/\/eur choice
% Structure definition: struct fame {
"= Does NOT declare a variable /> Fields */
= Variable type is “struct name” bi<
-~ pointer —— Easy to forget
struct name namel, *An, name_arLB]; semicolon!
\ ‘lns’ramce \ array
+ Joint struct definition and typedef N
0«"‘
" Don’t need to give struct a name in this case (*“‘
(Dadne (struct nm { combined
St < /* Tields */ '
L};
@ypeset | Lypedef struct nm ;

mMameonl;

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?

 Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |<«<— Size= ZC’/ bytes | struct rec {
| ([, |2 int ar[4]; int a[4]:
% | Slong d; flong 1;
}: m next;

Size = 5L bytes—— | };

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

14

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Accessing Structure Members

+ @Given a struct instance, access
member using the . operator:/ |struct rec {

: int a[4];
flong 1;

ri.i1 = val; struct rec *next;

F_d

+» @Given a pointer to a struct:

W*r; —

r = &rl; // or malloc space for r to point to
O dereference Cge* w stance)

We have two options: f@ acces field
- Use * and . operators: (*r)Yi ;

eq wvaleat

- Use -> operator for short: r->1 = val;«<—

+ In assembly: register holds address of the first byte
= Access members with offsets D(Rb, R, S)

- J s

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON

Java side-note

L14: Structs & Alignment

class Record { ... }
Record x = new Record();

% An instance of a class is like a pointer to a struct

containing the fields

" (Ignoring methods and subclassing for now)
" SoJava’s X.T islike C's Xx->F or (*x).T

+ In Java, almost everything is a pointer (“reference”) to

an object

" Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array

= So every Java variable or field is < 8 bytes (but can point to

lots of data)

16

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structure Representation
st delindion

(@truct rec { r
int a[4];
flong 1;
struct rec *next; a i next
/% 0 16 24 32

C dedare a po\v&fr
« Characteristics

" Contiguously-allocated region of memory
= Refer to members within structure by names
" Members may be of different types

17

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Structure Representation

struct rec { r
C\) int a[4]; SYruct rec
@ 1long i; P— N
® struct rec *nextf a[ﬂ]aml G[L]lo\[ﬂ i next
} *rs
0 16 24 32
/

+ Structure represented as block of memory
" Big enough to hold all of the fields

<}%7Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

18

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Accessing a Structure Member

struct rec {
int a[4];
flong 1;
struct rec *next;

L

+» Compiler knows the
offset of each member
within a struct

" Compute as
*(r+offset)

- Referring to absolute
offset, so no pointer
arithmetic

I <6¢Mr> r->1
a (i) | next

0] ++16 24 32
long get \ifstruct rec *r)
{

Hr ink%rdi, index In %rsi
movg 16(%rdi), %rax
ret

CSE351, Spring 2019

19

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2019

Exercise: Pointer to Structure Member

next

struct rec { r
int a[4];
flong 1;
struct rec *next; a
Jop =
} T 5

¥ ‘,(,.p;\ er ’—\

=

16 24 32

long* addr_of_i(struct rec *r)
1

return &(r->i);
3

r 1n %rdi

\eag(16 (%rd) ,%rax

ret

wonl address

struct rec*7 addr_of next(struct rec *r)

{

return &(r->next);

}

r 1n %rdi

|eai 24 (ledy) | %rax
ret

20

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Generating Pointer to Array Element

struct rec { r r+4*i1ndex
int a[4]; l
flong 1; v
struct rec *next; a i next
L 0 16 24 32
+ Generating Pointer to int* find_addr_of array elem
Array Flement (struct rec *r, long Index)
{
= Offset of each structure return &r->a[index];
member determined at ¥ \u
compile time &(r->af[index])

" Compute as:

r+4*index # r 1n %rdi, tndex In %rsi

leaq (%rdi,%rsi,4), %rax
ret

21

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

Review: Memory Alignment in x86-64

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Aligned addresses for data types:

1 char No restrictions

2 short Lowest bit must be zero: ...0, ()
_ i K

4 1nt, float Lowest 2 bits zero: ...00, t\ts i\f\?zba 5

g8 long, double, * Lowest 3 bits zero: ...000,
16 long double Lowest 4 bits zero: ...0000,

\\V"‘U\Hiple O’gh meGins ho remGinder Lhen \Jow Y \b\/,
Since K le N ()D\Me(O’F Z) d\ixf\&i/\j \97 K s et‘u\\/t«\(’y'\’\' +b > %ZCK)

No remander Mean) Yo ucgl'\'} is ot duving The st =) geros n | oved? %/20() bits .

22

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Alignment Principles

+» Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of bytes
(width is system dependent)
- Inefficient to load or store value that spans quad word boundaries
- Virtual memory trickier when value spans 2 pages (more on this later)

" Though x86-64 hardware will work regardless of alignment of
data

23

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment

Structures & Alignment

+» Unaligned Data

p [P+l p+5
'\\ho“' 3(‘3&"

+» Aligned Data

c[i[o] i[1]

p+9

" Primitive data type requires K bytes

= Address must be multiple of K

p+17

CSE351, Spring 2019

struct S1
O char c;
@ int 1[2]

@ double v;d—

+ *p: A

{
é_

1S

|7

|
Q= |

|

M

l

’loJFal

C 1[0] i[1] Y%
p+0 [5‘1-4\ p+8 pri2 p+16 p+24
Multiple of-4 Multiple of 8
Multiple of 8 internal fragmentation Multiple of 8

24

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Satisfying Alignment with Structures (1)

« Within structure: struct S1 { X
, , _ char c; 1
" Must satisfy each element’s alignment requirement int i[2]; | 4
« Qverall structure placement , Souble v: |
= Each structure has alignment requirement K.« P-
- Kynm(:X

* |Kmax i= Largest alignment of any element
« Counts array elements individually as elements

+ Example:
" Kmax =8, due to double element

C 1[0} 1[1] Vv
p+0 p+4 p+8 p+16 p+24

A a a

Multiple ofo Multiple of 8

Multiple of 8 internal fragmentation ’s

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2019

Satisfying Alignment with Structures (2)

» Can find offset of individual fields
using offsetof()

"= Needto#include <stddef.h>
= Example: offsetof(struct S2,c) returns 16

For largest alighment requirement K ,,x,
overall structure size must be multiple of K.«
= Compiler will add padding at end of

struct S2 {
double v;&k ¥
int i[21;+)y
char c; _4
+ *p;

structure to meet overall structure nd omalt of 8 X

alignment requirement v

pad

P+\'+

v 1[0] 1[1] |c

p+0 p+8 p+16
1 malt (r(4 \/ mult of L v

Multiple of 8 external fragmentation

p+24

Multiple of 8
26

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Arrays of Structures

= Overall structure length multiple of K,,, 4y Stggﬁglizv‘_{
+ Satisfy alignment requirement iﬂt 1[2]:
_ char c;
for every element in array } a[10];

alol | all || ar2a 1| - - -
+2

a+48 a+72
‘\\\\\\ Q%ZE> {ii,,//”’///)”

o\ligned J\Mresjcj

&+

v i[0] i[1] Jc

a+24 a+32 a+40 a+48
| \/
L S s tels e !

external fragmentation

27

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetofT can be used to get actual field offset

= Qverall struct must be aligned according to largest field

" Total struct size must be multiple of its alignment
(may insert padding)
- s1zeoT should be used to get true size of structs

28

WA UNIVERSITY of WASHINGTON

L14: Structs & Alignment CSE351, Spring 2019

How the Programmer Can Save Space

+» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S$4 { struct S5 {
char c; int 1;
int i; ‘ char c;
char d; char d;
+ *p: *P;
K 1
S ™~ Samée Wy
i d i cld N but more
| e‘@(?(\\eﬁ""l
Y Y
12 bytes 8 byte

29

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment

CSE351, Spring 2019

Vote on sizeof(struct old):

Peer Instruction Question hitto://pollev.com/rea

Minimize the size of the struct by re-ordering the vars

_K_struct old { struct new {
Al int i; int i;
7 | short s[3]; £loat ;
¥ char *c; ‘ char ¥ c 3 & quldalso seitda
> +L\C§e (im"'fry\c\\
9| float f; short 501 5 externa fg)
\<W\6\X = <6\ }; };
- What are the old and new sizes of the struct?
sizeof(struct old) = >2 B sizeof(struct new) = 24 B
A. .
e dd 1 _BealalzZZAd < [T
B. 22 bytes O 4 o n 20 2% 22
C. 28 bytes | — | | 7
] St nes L ! B Q st} |) (st} (7]
[D. 32 bytes| o 2 g T

m

We're lost...
30

WA UNIVERSITY of WASHINGTON L14: Structs & Alignment CSE351, Spring 2019

Summary

< Arraysin C
= Aligned to satisfy every element’s alignment requirement
+ Structures

= Allocate bytes in order declared
" Pad in middle and at end to satisfy alignment

31

