Floating Point II, x86-64 Intro
CSE 351 Spring 2019

Instructor: Ruth Anderson

Teaching Assistants:
Gavin Cai
Britt Henderson
Sophie Tian
Casey Xing

Jack Eggleston
Richard Jiang
Connie Wang
Chin Yeoh

John Feltrup
Jack Skalitzky
Sam Wolfson

http://xkcd.com/899/
Administrivia

- Lab 1a due TONIGHT Monday 4/15 at 11:59 pm
 - Submit `pointer.c` and `lab1Areflect.txt`

- Lab 1b due Monday (4/22)
 - Submit `bits.c` and `lab1Breflect.txt`

- Homework 2 due Wednesday (4/24)
 - On Integers, Floating Point, and x86-64
Denorm Numbers

- Denormalized numbers ($E = 0x00$)
 - No leading 1
 - Uses implicit exponent of -126

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0\ldots0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0\ldots01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number
Other Special Cases

- **E = 0xFF, M = 0**: ± ∞
 - *e.g.* division by 0
 - Still work in comparisons!

- **E = 0xFF, M ≠ 0**: Not a Number (**NaN**)
 - *e.g.* square root of negative number, 0/0, ∞–∞
 - NaN propagates through computations
 - Value of **M** can be useful in debugging

- **New largest value (besides ∞)?**
 - **E = 0xFF** has now been taken!
 - **E = 0xFE** has largest: \(1.1\ldots1_2 \times 2^{127} = 2^{128} - 2^{104}\)
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Tiny Floating Point Representation

- We will use the following 8-bit floating point representation to illustrate some key points:

- Assume that it has the same properties as IEEE floating point:
 - bias =
 - encoding of $-0 =$
 - encoding of $+\infty =$
 - encoding of the largest (+) normalized # =
 - encoding of the smallest (+) normalized # =
Peer Instruction Question

Using our 8-bit representation, what value gets stored when we try to encode $2.625 = 2^1 + 2^{-1} + 2^{-3}$?

- Vote at http://pollev.com/rea

A. + 2.5
B. + 2.625
C. + 2.75
D. + 3.25
E. We’re lost...
Peer Instruction Question

- Using our 8-bit representation, what value gets stored when we try to encode \(384 = 2^8 + 2^7\)?

- Vote at http://pollev.com/rea

A. +256
B. +384
C. +\(\infty\)
D. NaN
E. We’re lost...
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: **Overflow** (Exp too large)
 - Between zero and smallest denorm: **Underflow** (Exp too small)
 - Between norm numbers: **Rounding**

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - What is this “step” when Exp = 100?

- Distribution of values is denser toward zero

![Distribution of Values Diagram](image)
Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)

- In our tiny example:
 - Man = 1.001 01 rounded to M = 0b001
 - Man = 1.001 11 rounded to M = 0b010
 - Man = 1.001 10 rounded to M = 0b010
Floating Point Operations: Basic Idea

Value = \((-1)^S \times \text{Mantissa} \times 2^\text{Exponent}\)

- \(x +_f y = \text{Round}(x + y)\)
- \(x \times_f y = \text{Round}(x \times y)\)

Basic idea for floating point operations:
- First, compute the exact result
- Then \textit{round} the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- Floats with value $\pm\infty$ and NaN can be used in operations
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to **rounding**
 - **Not associative**: $(3.14+1e100)-1e100 \neq 3.14+(1e100-1e100)
 - Not distributive: $100\times(0.1+0.2) \neq 100\times0.1+100\times0.2$
 - 0.000000000000003553 vs 30
 - **Not cumulative**
 - Repeatedly adding a very small number to a large one may do nothing
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- Two common levels of precision:
 - `float` 1.0f single precision (32-bit)
 - `double` 1.0 double precision (64-bit)

- `#include <math.h>` to get `INFINITY` and `NAN` constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
Floating Point Conversions in C

- **Casting between int, float, and double changes the bit representation**
 - `int → float`
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - `int or float → double`
 - Exact conversion (all 32-bit ints representable)
 - `long → double`
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - `double or float → int`
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to T_{min} (even if the value is a very big positive)
Peer Instruction Question

We execute the following code in C. How many bytes are the same (value and position) between \(i\) and \(f\)?

- No voting.

```c
int i = 384; // 2^8 + 2^7
float f = (float) i;
```

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We’re lost...
Floating Point and the Programmer

```c
#include <stdio.h>

int main(int argc, char* argv[]) {
    float f1 = 1.0;
    float f2 = 0.0;
    int i;
    for (i = 0; i < 10; i++)
        f2 += 1.0/10.0;

    printf("0x%08x  0x%08x\n", *(int*)&f1, *(int*)&f2);
    printf("f1 = %10.9f\n", f1);
    printf("f2 = %10.9f\n\n", f2);

    f1 = 1E30;
    f2 = 1E-30;
    float f3 = f1 + f2;
    printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

    return 0;
}
```

```
$ ./a.out
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
```
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point

- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer

- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around

- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to Tmin in 2038

- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Roadmap

C:
```c

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
c.getMPG();
```

Assembly language:
```assembly
get_mpg:
    pushq %rbp
    movq %rsp, %rbp
    ...
    popq %rbp
    ret
```

Machine code:
```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000001111
```

OS:
- Windows 10
- OS X Yosemite

Computer system:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
Architecture Sits at the Hardware Interface

Source code
Different applications or algorithms

Compiler
Perform optimizations, generate instructions

Architecture
Instruction set

Hardware
Different implementations

C Language
Program A

Program B

Your program

Compiler
GCC

Clang

Architecture
x86-64

ARMv8
(AArch64/A64)

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

ARM Cortex-A53

Apple A7
Definitions

- **Architecture (ISA):** The parts of a processor design that one needs to understand to write assembly code
 - “What is directly visible to software”

- **Microarchitecture:** Implementation of the architecture
 - CSE/EE 469
Instruction Set Architectures

- The ISA defines:
 - The system’s state *(e.g. registers, memory, program counter)*
 - The *instructions* the CPU can execute
 - The *effect* that each of these instructions will have on the system state
Instruction Set Philosophies

- **Complex Instruction Set Computing (CISC):** Add more and more elaborate and specialized instructions as needed
 - Lots of tools for programmers to use, but hardware must be able to handle all instructions
 - x86-64 is CISC, but only a small subset of instructions encountered with Linux programs

- **Reduced Instruction Set Computing (RISC):** Keep instruction set small and regular
 - Easier to build fast hardware
 - Let software do the complicated operations by composing simpler ones
General ISA Design Decisions

- Instructions
 - What instructions are available? What do they do?
 - How are they encoded?

- Registers
 - How many registers are there?
 - How wide are they?

- Memory
 - How do you specify a memory location?
Mainstream ISAs

Intel (x86)
- **Designer**: Intel, AMD
- **Bits**: 16-bit, 32-bit and 64-bit
- **Introduced**: 1978 (16-bit), 1985 (32-bit), 2003 (64-bit)
- **Design**: CISC
- **Type**: Register-memory
- **Encoding**: Variable (1 to 15 bytes)
- **Endianness**: Little

ARM architectures
- **Designer**: ARM Holdings
- **Bits**: 32-bit, 64-bit
- **Introduced**: 1985; 31 years ago
- **Design**: RISC
- **Type**: Register-Register
- **Encoding**: AArch64/A64 and AArch32/A32 use 32-bit instructions, T32 (Thumb-2) uses mixed 16- and 32-bit instructions. ARMv7 user-space compatibility[1]
- **Endianness**: Big (little as default)

MIPS
- **Designer**: MIPS Technologies, Inc.
- **Bits**: 64-bit (32→64)
- **Introduced**: 1981; 35 years ago
- **Design**: RISC
- **Type**: Register-Register
- **Encoding**: Fixed
- **Endianness**: Big

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set
Summary

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types does change the bits
- x86-64 is a complex instruction set computing (CISC) architecture