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Administrivia

+» Lab 1a due TONIGHT Monday 4/15 at 11:59 pm
= Submit pointer.cand lablAreflect.txt

+ Lab 1b due Monday (4/22)
= Submitbits.cand lablBreflect.txt

+» Homework 2 due Wednesday (4/24)
" On Integers, Floating Point, and x86-64

CSE351, Spring 2019



WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers (E = 0x00)
" No leading 1

= Uses implicit exponent of —126
N —

+» Denormalized numbers close the gap between zero

and the smallest normalized number

So much
. : 126 L 4 9-126
Smallest norm: £ 1.0...0,,,,%2 _2/ — closerto0

= Smallest denorm: + 0.0...01,  x2126 =+ 2-149

S P o two
- There is still a gap between zero and the smallest denormalized

number
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Other Special Cases

« E=0xFF, M =0: t oo
~ m e.g. division by O

0\\\ oneS

= Still work in comparisons!
At
2 E=0xFF, M # 0: Not a Number (NaN)
" e.g. square root of negative number, 0/0, co—oo

= NaN propagates through computations
= Value of M can be useful in debugging (1ells you  Couse of Nal\))

+» New largest value (besides oo)?

= E = 0OxFF has now been taken!
23 ones

" E =O0xFE has largest: 1.1...1,x2127 = 2128 — 2104

(X 2
L7 ZSL"'I.)Y&\_; ‘)
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Floating Point Encoding Summary

smallest E
G 0's)

Cver\,'h\l'hj
e\sc

lorgest E
G\l A's)

CSE351, Spring 2019

Meaning
0x00 0 +0
0x00 non-zero + denorm num
/%91 —OxFE | —anything + norm num g)
 OXFF 0 T oo
OxFF non-zero NaN

|

\/
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Floating point topics

+ Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-point in C

% There are many more details that we won’t cover
" |t's a 58-page standard...
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Tiny Floating Point Representation

+» We will use the fol
representation to i

owing 8-bit floating point
lustrate some key points:

— X\
S E M
1 4 3

+» Assume that it has the same properties as IEEE

floating point:

- 3
- bias=2\J ’*\ -~/

~

7

= encoding of —0 = Ob | J0I0 o0

" encoding of +oo = OLO N1 g0
—N
= encoding of the largest (+) normalized #=0L 0 [ /D |||

= encoding of the smallest (+) normalized #=pL 1 001 oD
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Peer Instruction Question

+ Using our 8-bit representation, what value gets
stored when we try to encode 2.625 =21 + 2°1 + 2-3?

S E M ~2 (1\142 42\, )

1 A 3 = ’2 x 10101,
= \/ote at http://pollev.com/rea

S=0
A E = Exp+ bias
| =1+ 3 =8
B. +2.625 = Ob 1000
C. +2.75 M=ok Q’l_o/j_
D. +3.25 U con only shore
, 3 !

E. We're lost...

<hoced 05 - OB O 1000 010 = z.g\
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Peer Instruction Question

+ Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28+ 27?2 =27 (1+2*)

- 3
S| E T I
1 4 3 S=0
= \/ote at http://pollev.com/rea F= E;P Ahigs
= g+ #=15
A. = 0d111D
T
B. +384 this falls sudtside sHLe/
[ C. +oo / novmalized exponent onge .
D. NaN Fhig Rumber {30 |6«5f, Sv o we 6"\)&
+ A4
E. We're lost... [ +00 <= 0L0O 1113 005(

md ec-o\
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Distribution of Values

+» What ranges are NOT representable?

= Between largest norm and infinity  Overflow (Exp too large)

= Between zero and smallest denorm Underflow (Exp too small)

= Between norm numbers? Rounding

% Given a FP number, what’s the bit pattern of the next
# M=050...00, then 25¢x1 0O
largest representable number?

= What is this “step” when Exp =0? 2%
= What is this “step” when Exp = 100? 2%

—_— e -7
oy = 5023

« Distribution of values is denser toward zero

overflou rw\o\cr-Flw round ing Y over low
L7 —— Aﬂﬂﬂﬂ%ﬂm‘#ﬁkﬁ—é |
15 -10 5 0 5 ~o 15

¢ Denormalized A Normalized Infinity

10
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. . . This is extra
Floating Point Rounding (non-testable)

material

+» The |IEEE 754 standard actually specifies different
rounding modes:
<KRound to nearest, ties to nearest even digit
" Round toward 4o (round up)
= Round toward —oo (round down)
= Round toward O (truncation)

+ In our tiny example: S E M

. < hak
= Man = 1.001/01 rounded to M = 0b001
= Man = 1.001/11 rounded to M = 06010
— == |
= Man = 1.001/1d rounded to M = 0b01
Man = 1.000/10 remge to M = 0b0oOS

[EN
N
09

even Ngr*

11
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Floating Point Operations: Basic Idea

Value = (-1) xMantissax2FExponent

E M

» X +¢ Y = Round(Xx + Yy)
+ X *ey = Round(xX * y)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into the specified
precision (width of M)

- Possibly over/underflow if exponent outside of range

12
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|1
Mathematical Properties of FP Operatiorxs;'/

+» Overflow yields +00 and underflow yields O

« Floats with value +co0 and NaN can be used in
operations

= Result usually still =00 or NaN, but not always intuitive

+ Floating point operations do not work like real math,

due to rounding [O\oa
" Not associative: G/wle\lo())l— 3. 14+(M)
3.14
= Not distributive: 100*(0.1+0.2) '= 100*0.1+100%0.2
30.000000000000003553 30

= Not cumulative

- Repeatedly adding a very small number to a large one may do nothing

13



WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Floating point topics

+ Fractional binary numbers

» |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-pointin C

% There are many more details that we won’t cover
" |t's a 58-page standard...

14
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Floating Point in C

+» Two common levels of precision:
float 1.0F single precision (32-bit)
double 1.0 double precision (64-bit)

+ #include <math.h> toget INFINITY and NAN
constants  <HFloct k> 4 zidibonal conctants

lrEquaIity (==) comparisons between floating point

numbers are tricky, and often return unexpected
results, so just avoid them!

\\_,L“} we ghs(F1 -+12) ¢ ’tl’“ J
a

Some CurL;'\"Gry ‘Hmejl'w\

15
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Floating Point Conversions in C ! ! !

+» Casting between Int, Float, and doubl e changes
the bit representation
= Int - float

- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

= Intor float —» double
- Exact conversion (all 32-bit 1nts representable)

= long — double

- Depends on word size (32-bit is exact, 64-bit may be rounded)
= doubleor float —» Int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
16
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Peer Instruction Question

+» We execute the following code in C. How many bytes
are the same (value and position) between 1 and F?

1 stred a5 Ox 00 00 01 80

" No voting.
int i = 384; // 278 + 2/7]= Ob If 0006068
float ¥ = (float) 1; =11, #)°

| $=0

A j E=§1177 =135

B. 1byte = 0b1 0 0111

C. 2 bytes M=ok 100

D. 3 bytes | 0L 0 100 ow{ 1opy.0

E.

We’re lost...

f stored as Ox H3 CO 00 OO

17



Floating Point and the Programmer

1 0x2°—> §=0, E=0l1 11|, "=0 .0
#include < > 1= Obo/on Ny /000 ooop 00 @)y ook 0O = Ox 3F3000du
_ . $ ./a.out
int main(int argc, char* argv|[]) { 0x3F300000° Ox3F300001 |
I:Oa: g _ (1);8{/5?“‘& float condhast f1 = 1.000000000
in:ai_ = YUY 2 = 1.000000119

for (i = 0; 1 < 10; 1++)
f2 += 1.0/10.0;
£2 should == 10«7 = |
printf('0x%08x %08x\n"", *(int*)&fl, *(int*)&f2);

Tl

printf(” %10.9f\n"", f1);
printf(” %10.9F\n\n"", 2); 5
.C
f1 = 1E30; g% qec + 0%
2 = 1E-30;0™°
float 3 = 1 + f2;
printf(” %s\n", f1 == 3 ? "yes"™ I "no" );
'0‘50:: lD‘S“_L lD-BO
return O;
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Floating Point Summary

« Floats also suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike INts
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+» Floating point arithmetic not associative or
distributive

" Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between 1nts and floats!

19
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Q\lumber Representation|Really Matters

1991: Patriot missile targeting error
" clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

= |imited (decimal) representation: overflow, wrap-around
» 2038: Unix epoch rollover
® Unix epoch = seconds since 12am, January 1, 1970
" signed 32-bit integer representation rolls over to TMin in 2038
Other related bugs:
= 1982: Vancouver Stock Exchange 10% error in less than 2 years
= 1994: Intel Pentium FDIV (floating point division) HW bug (5475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero
= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

20
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Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100); x86 assembly
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
—— —
Assembly get_mpg:
language: pushg  J%rbp

movq %rsp, %rbp

popq %rbp

ret .
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

21
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Source code

Different applications

or

LO7: Floating Point I, x86-64 Intro
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Architecture Sits at the Hardware Interface

algorithms

Compiler

Perform optimizations,
generate instructions

Instruction set

C Language :
| . F
I e \Nl\l L)Q WS Ir\s
Program S A —I\_J _________ ,
A ! |
x86-64
GCC T
Program :
B 1
Clang
Your ; mmm o - ‘
program ; ! ARMv8
_________________ ; | (AArch64/A64) :
e e oo p

Architecture

Hardware
Different
implementations

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

ARM Cortex-A53

Apple A7

22
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Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture

= CSE/EE 469

23
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Instruction Set Architectures

«» The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)

" The instructions the CPU can execute

CSE351, Spring 2019

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

24
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Instruction Set Philosophies

+» Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed

" |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

%+ Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular
= Easier to build fast hardware

" |et software do the complicated operations by composing
simpler ones

25
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General ISA Design Decisions

< |nstructions

" What instructions are available? What do they do?
" How are they encoded?

+» Registers
= How many registers are there?
®" How wide are they?

< Memory

" How do you specify a memory location?

CSE351, Spring 2019
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Mainstream ISAs

Int

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-hit), 2003
(64-bit)
Design _CISC
Type Register-memory

Encoding  Variable (1to 15 b
g Variable (1 to 15 bytes)

mness Little
Little
P

Macbooks & PCs
(Corei3, i5,i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings

Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RIS

Type Register-Register

AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibility“]

Encoding

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIFPSS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

27
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Summary

+» Floating point encoding has many limitations

= QOverflow, underflow, rounding

" Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

" Floating point arithmetic is NOT associative or distributive

+» Converting between integral and floating point data
types does change the bits

+» X86-64 is a complex instruction set computing (CISC)
architecture

28



