WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro

Floating Point 1l, x86-64 Intro

CSE 351 Spring 2019

Instructor: Teaching Assistants:

Ruth Anderson Gavin Cai

Britt Henderson

Sophie Tian
Casey Xing

Jack Eggleston

Richard Jiang

Connie Wang

Chin Yeoh

CSE351, Spring 2019

John Feltrup
Jack Skalitzky
Sam Wolfson

0.39 (AcTuALY

0.0000000372 FRBIODEN GIRD-ACEFTED AS
LESS THAN 1) REGION CANON BY ORTHOCDX,
‘ e T MAHEMATIGANS __

NUMBER IND\CATING IFYOU ENCOUNTER

AFACTOID 15 MADELP A NUMBER HIGHER

("evERY 7 Yemps.” ‘s THAN THIS, YOURE
SAYS THERE NOT DOING REAL MATH

——

NEGATVE ¢ - PARTHENON 2.9299372
MITATOR” SUNFLOWERS (€ AND T,
NUMBERS GoLDEN RATO OBSERVED)
(DONOTUSE) |JAIT COME BACK,

T HAVE FACTS!

. S N
4 o0 1 | 2 ‘3 Q
—

T

SITEOF
BATTILE
OF Y.log

i
- H— UNEX
hr\ o AL

N (ARE 7.5 ER) I
!_l \ L i
ORED , 7 g 9 10
P — ,
LARGEST
£VEN PRIME

- T

http://xkcd.com/899/

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

Administrivia

+» Lab 1a due TONIGHT Monday 4/15 at 11:59 pm
= Submit pointer.cand lablAreflect.txt

+ Lab 1b due Monday (4/22)
= Submitbits.cand lablBreflect.txt

+» Homework 2 due Wednesday (4/24)
" On Integers, Floating Point, and x86-64

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers (E = 0x00)
" No leading 1

= Uses implicit exponent of —126
N —

+» Denormalized numbers close the gap between zero

and the smallest normalized number

So much
. : 126 L 4 9-126
Smallest norm: £ 1.0...0,,,,%2 _2/ — closerto0

= Smallest denorm: + 0.0...01, x2126 =+ 2-149

S P o two
- There is still a gap between zero and the smallest denormalized

number

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Other Special Cases

« E=0xFF, M =0: t oo
~ m e.g. division by O

0\\\ oneS

= Still work in comparisons!
At
2 E=0xFF, M # 0: Not a Number (NaN)
" e.g. square root of negative number, 0/0, co—oo

= NaN propagates through computations
= Value of M can be useful in debugging (1ells you Couse of Nal\))

+» New largest value (besides oo)?

= E = 0OxFF has now been taken!
23 ones

" E =O0xFE has largest: 1.1...1,x2127 = 2128 — 2104

(X 2
L7 ZSL"'I.)Y&_; ‘)

WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro

Floating Point Encoding Summary

smallest E
G 0's)

Cver\,'h\l'hj
e\sc

lorgest E
G\l A's)

CSE351, Spring 2019

Meaning
0x00 0 +0
0x00 non-zero + denorm num
/%91 —OxFE | —anything + norm num g)
 OXFF 0 T oo
OxFF non-zero NaN

|

\/

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Floating point topics

+ Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-point in C

% There are many more details that we won’t cover
" |t's a 58-page standard...

WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro CSE351, Spring 2019

Tiny Floating Point Representation

+» We will use the fol
representation to i

owing 8-bit floating point
lustrate some key points:

— X\
S E M
1 4 3

+» Assume that it has the same properties as IEEE

floating point:

- 3
- bias=2\J ’*\ -~/

~

7

= encoding of —0 = Ob | J0I0 o0

" encoding of +oo = OLO N1 g0
—N
= encoding of the largest (+) normalized #=0L 0 [/D |||

= encoding of the smallest (+) normalized #=pL 1 001 oD

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Peer Instruction Question

+ Using our 8-bit representation, what value gets
stored when we try to encode 2.625 =21 + 2°1 + 2-3?

S E M ~2 (1\142 42\,)

1 A 3 = ’2 x 10101,
= \/ote at http://pollev.com/rea

S=0
A E = Exp+ bias
| =1+ 3 =8
B. +2.625 = Ob 1000
C. +2.75 M=ok Q’l_o/j_
D. +3.25 U con only shore
, 3 !

E. We're lost...

<hoced 05 - OB O 1000 010 = z.g\

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Peer Instruction Question

+ Using our 8-bit representation, what value gets
stored when we try to encode 384 = 28+ 27?2 =27 (1+2*)

- 3
S| E T I
1 4 3 S=0
= \/ote at http://pollev.com/rea F= E;P Ahigs
= g+ #=15
A. = 0d111D
T
B. +384 this falls sudtside sHLe/
[C. +oo / novmalized exponent onge .
D. NaN Fhig Rumber {30 |6«5f, Sv o we 6"\)&
+ A4
E. We're lost... [+00 <= 0L0O 1113 005(

md ec-o\

WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro

CSE351, Spring 2019

Distribution of Values

+» What ranges are NOT representable?

= Between largest norm and infinity Overflow (Exp too large)

= Between zero and smallest denorm Underflow (Exp too small)

= Between norm numbers? Rounding

% Given a FP number, what’s the bit pattern of the next
M=050...00, then 25¢x1 0O
largest representable number?

= What is this “step” when Exp =0? 2%
= What is this “step” when Exp = 100? 2%

—_— e -7
oy = 5023

« Distribution of values is denser toward zero

overflou rw\o\cr-Flw round ing Y over low
L7 —— Aﬂﬂﬂﬂ%ﬂm‘#ﬁkﬁ—é |
15 -10 5 0 5 ~o 15

¢ Denormalized A Normalized Infinity

10

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

. . . This is extra
Floating Point Rounding (non-testable)

material

+» The |IEEE 754 standard actually specifies different
rounding modes:
<KRound to nearest, ties to nearest even digit
" Round toward 4o (round up)
= Round toward —oo (round down)
= Round toward O (truncation)

+ In our tiny example: S E M

. < hak
= Man = 1.001/01 rounded to M = 0b001
= Man = 1.001/11 rounded to M = 06010
— == |
= Man = 1.001/1d rounded to M = 0b01
Man = 1.000/10 remge to M = 0b0oOS

[EN
N
09

even Ngr*

11

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

CSE351, Spring 2019

Floating Point Operations: Basic Idea

Value = (-1) xMantissax2FExponent

E M

» X +¢ Y = Round(Xx + Yy)
+ X *ey = Round(xX * y)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into the specified
precision (width of M)

- Possibly over/underflow if exponent outside of range

12

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

|1
Mathematical Properties of FP Operatiorxs;'/

+» Overflow yields +00 and underflow yields O

« Floats with value +co0 and NaN can be used in
operations

= Result usually still =00 or NaN, but not always intuitive

+ Floating point operations do not work like real math,

due to rounding [O\oa
" Not associative: G/wle\lo())l— 3. 14+(M)
3.14
= Not distributive: 100*(0.1+0.2) '= 100*0.1+100%0.2
30.000000000000003553 30

= Not cumulative

- Repeatedly adding a very small number to a large one may do nothing

13

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Floating point topics

+ Fractional binary numbers

» |EEE floating-point standard

+ Floating-point operations and rounding
+ Floating-pointin C

% There are many more details that we won’t cover
" |t's a 58-page standard...

14

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

CSE351, Spring 2019

Floating Point in C

+» Two common levels of precision:
float 1.0F single precision (32-bit)
double 1.0 double precision (64-bit)

+ #include <math.h> toget INFINITY and NAN
constants <HFloct k> 4 zidibonal conctants

lrEquaIity (==) comparisons between floating point

numbers are tricky, and often return unexpected
results, so just avoid them!

_,L“} we ghs(F1 -+12) ¢ ’tl’“ J
a

Some CurL;'\"Gry ‘Hmejl'w\

15

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Floating Point Conversions in C ! ! !

+» Casting between Int, Float, and doubl e changes
the bit representation
= Int - float

- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

= Intor float —» double
- Exact conversion (all 32-bit 1nts representable)

= long — double

- Depends on word size (32-bit is exact, 64-bit may be rounded)
= doubleor float —» Int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
16

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro

Peer Instruction Question

+» We execute the following code in C. How many bytes
are the same (value and position) between 1 and F?

1 stred a5 Ox 00 00 01 80

" No voting.
int i = 384; // 278 + 2/7]= Ob If 0006068
float ¥ = (float) 1; =11, #)°

| $=0

A j E=§1177 =135

B. 1byte = 0b1 0 0111

C. 2 bytes M=ok 100

D. 3 bytes | 0L 0 100 ow{ 1opy.0

E.

We’re lost...

f stored as Ox H3 CO 00 OO

17

Floating Point and the Programmer

1 0x2°—> §=0, E=0l1 11|, "=0 .0
#include < > 1= Obo/on Ny /000 ooop 00 @)y ook 0O = Ox 3F3000du
_ . $./a.out
int main(int argc, char* argv|[]) { 0x3F300000° Ox3F300001 |
I:Oa: g _ (1);8{/5?“‘& float condhast f1 = 1.000000000
in:ai_ = YUY 2 = 1.000000119

for (i = 0; 1 < 10; 1++)
f2 += 1.0/10.0;
£2 should == 10«7 = |
printf('0x%08x %08x\n"", *(int*)&fl, *(int*)&f2);

Tl

printf(” %10.9f\n"", f1);
printf(” %10.9F\n\n"", 2); 5
.C
f1 = 1E30; g% qec + 0%
2 = 1E-30;0™°
float 3 = 1 + f2;
printf(” %s\n", f1 == 3 ? "yes"™ I "no");
'0‘50:: lD‘S“_L lD-BO
return O;

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

18

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Floating Point Summary

« Floats also suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike INts
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+» Floating point arithmetic not associative or
distributive

" Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between 1nts and floats!

19

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Q\lumber Representation|Really Matters

1991: Patriot missile targeting error
" clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

= |imited (decimal) representation: overflow, wrap-around
» 2038: Unix epoch rollover
® Unix epoch = seconds since 12am, January 1, 1970
" signed 32-bit integer representation rolls over to TMin in 2038
Other related bugs:
= 1982: Vancouver Stock Exchange 10% error in less than 2 years
= 1994: Intel Pentium FDIV (floating point division) HW bug (5475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero
= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

20

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100); x86 assembly
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
—— —
Assembly get_mpg:
language: pushg J%rbp

movq %rsp, %rbp

popq %rbp

ret .
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

21

WA UNIVERSITY of WASHINGTON

Source code

Different applications

or

LO7: Floating Point I, x86-64 Intro

CSE351, Spring 2019

Architecture Sits at the Hardware Interface

algorithms

Compiler

Perform optimizations,
generate instructions

Instruction set

C Language :
| . F
I e \Nl\l L)Q WS Ir\s
Program S A —I_J _________ ,
A ! |
x86-64
GCC T
Program :
B 1
Clang
Your ; mmm o - ‘
program ; ! ARMv8
_________________ ; | (AArch64/A64) :
e e oo p

Architecture

Hardware
Different
implementations

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

ARM Cortex-A53

Apple A7

22

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture

= CSE/EE 469

23

WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro

Instruction Set Architectures

«» The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)

" The instructions the CPU can execute

CSE351, Spring 2019

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

24

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

Instruction Set Philosophies

+» Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed

" |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

%+ Reduced Instruction Set Computing (RISC): Keep
instruction set small and regular
= Easier to build fast hardware

" |et software do the complicated operations by composing
simpler ones

25

CSE351, Spring 2019

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

General ISA Design Decisions

< |nstructions

" What instructions are available? What do they do?
" How are they encoded?

+» Registers
= How many registers are there?
®" How wide are they?

< Memory

" How do you specify a memory location?

CSE351, Spring 2019

26

WA UNIVERSITY of WASHINGTON

LO7: Floating Point I, x86-64 Intro

CSE351, Spring 2019

Mainstream ISAs

Int

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-hit), 2003
(64-bit)
Design _CISC
Type Register-memory

Encoding Variable (1to 15 b
g Variable (1 to 15 bytes)

mness Little
Little
P

Macbooks & PCs
(Corei3, i5,i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings

Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RIS

Type Register-Register

AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibility“]

Encoding

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIFPSS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

27

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Spring 2019

Summary

+» Floating point encoding has many limitations

= QOverflow, underflow, rounding

" Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

" Floating point arithmetic is NOT associative or distributive

+» Converting between integral and floating point data
types does change the bits

+» X86-64 is a complex instruction set computing (CISC)
architecture

28

