Floating Point II, x86-64 Intro
CSE 351 Spring 2019

Instructor: Ruth Anderson
Teaching Assistants:
Gavin Cai, Jack Eggleston, John Feltrup
Britt Henderson, Richard Jiang, Jack Skalitzky
Sophie Tian, Connie Wang, Sam Wolfson
Casey Xing, Chin Yeoh

http://xkcd.com/899/
Administrivia

- Lab 1a due TONIGHT Monday 4/15 at 11:59 pm
 - Submit `pointer.c` and `lab1Areflect.txt`

- Lab 1b due Monday (4/22)
 - Submit `bits.c` and `lab1Breflect.txt`

- Homework 2 due Wednesday (4/24)
 - On Integers, Floating Point, and x86-64
Denorm Numbers

- Denormalized numbers ($E = 0x00$)
 - No leading 1
 - Uses implicit exponent of -126

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0...01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

This is extra (non-testable) material
Other Special Cases

- **E = 0xFF, M = 0:** $\pm \infty$
 - *e.g.* division by 0
 - Still work in comparisons!

- **E = 0xFF, M ≠ 0:** Not a Number (NaN)
 - *e.g.* square root of negative number, 0/0, $\infty - \infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)

- **New largest value (besides ∞)?**
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1\ldots1_2 \times 2^{127} = 2^{128} - 2^{104}$
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Tiny Floating Point Representation

- We will use the following 8-bit floating point representation to illustrate some key points:

- Assume that it has the same properties as IEEE floating point:
 - bias = $2^{3} - 1 = 7$
 - encoding of $-0 = 010000000$
 - encoding of $+\infty = 011111000$
 - encoding of the largest (+) normalized # = 011111111
 - encoding of the smallest (+) normalized # = 010000000
Peer Instruction Question

- Using our 8-bit representation, what value gets stored when we try to encode $2.625 = 2^1 + 2^{-1} + 2^{-3}$?

- Vote at http://pollev.com/rea

 A. +2.5
 B. +2.625
 C. +2.75
 D. +3.25
 E. We’re lost…

\[S = 0 \]
\[E = \text{Exp} + \text{bias} = 1 + 7 = 8 \]
\[= \text{Ob 1000} \]
\[M = \text{Ob 010}/1 \]

\[\text{stored as: Ob 01000 010 = 2.5} \]
Peer Instruction Question

- Using our **8-bit** representation, what value gets stored when we try to encode \(384 = 2^8 + 2^7? = 2^8 (1 + 2^{-1})\)

\[
\begin{array}{c|c|c}
S & E & M \\
\hline
1 & 4 & 3
\end{array}
\]

\(S = 0\)

\(E = \text{Exp} + \text{bias} = 8 + 7 = 15\)

\(= 0b1111\)

This falls outside of the normalized exponent range!

\(\text{this number is too large, so we store}\)

\[+\infty \leftrightarrow \text{Ob 0 1111 000}\]

instead

- Vote at http://pollev.com/rea

A. + 256
B. + 384
C. +∞
D. NaN
E. We're lost...
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: **Overflow** (Exp too large)
 - Between zero and smallest denorm: **Underflow** (Exp too small)
 - Between norm numbers?: **Rounding**

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - 2^{-23}
 - What is this “step” when Exp = 100?
 - 2^{77}

- Distribution of values is denser toward zero
Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)

- In our tiny example:
 - Man = 1.001101 rounded to $M = 0b001$
 - Man = 1.001111 rounded to $M = 0b010$
 - Man = 1.001100 rounded to $M = 0b010$
 - Man = 1.000110 rounded to $M = 0b010$
 - Man = 1.000100 rounded to $M = 0b000$
Floating Point Operations: Basic Idea

Value = \((-1)^S \times \text{Mantissa} \times 2^{\text{Exponent}}\)

- \(x +_f y = \text{Round}(x + y)\)
- \(x \times_f y = \text{Round}(x \times y)\)

Basic idea for floating point operations:
- First, compute the exact result
- Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- Floats with value $\pm\infty$ and NaN can be used in operations
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to **rounding**
 - Not associative: $(3.14 + 1e100) - 1e100 \neq 3.14 + (1e100 - 1e100)$
 - Not distributive: $100 \cdot (0.1 + 0.2) \neq 100 \cdot 0.1 + 100 \cdot 0.2$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- Two common levels of precision:
 - `float 1.0f` single precision (32-bit)
 - `double 1.0` double precision (64-bit)

- `#include <math.h>` to get `INFINITY` and `NAN` constants
 `<float.h>` for additional constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

 Instead use \(\text{abs}(f_1 - f_2) < 2^{-20} \)

 \(\uparrow \) some arbitrary threshold
Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints representable)
 - long → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Peer Instruction Question

- We execute the following code in C. How many bytes are the same (value and position) between \(i \) and \(f \)?
 - No voting.

```c
int i = 384;  // 2^8 + 2^7
float f = (float) i;
```

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We’re lost...

\(i \) stored as \(0x \ 00 \ 00 \ 01 \ 80 \)
\(f \) stored as \(0x \ 43 \ 00 \ 00 \ 00 \ 00 \)
Floating Point and the Programmer

```
#include <stdio.h>

int main(int argc, char* argv[]) {
  float f1 = 1.0;
  float f2 = 0.0;
  int i;
  for (i = 0; i < 10; i++)
    f2 += 1.0/10.0;
  printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
  printf("f1 = %10.9f\n", f1);
  printf("f2 = %10.9f\n\n", f2);
  f1 = 1E30;
  f2 = 1E-30;
  float f3 = f1 + f2;
  printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
  return 0;
}
```

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- **Never** test floating point values for equality!
- **Careful** when converting between ints and floats!
Number Representation Really Matters

- **1991**: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996**: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000**: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038**: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to Tmin in 2038
- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Roadmap

C:
```c
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:
```assembly
get_mpg:
  pushq  %rbp
  movq  %rsp, %rbp
  ...
  popq  %rbp
  ret
```

Machine code:
```
0111010000011000
1000110100000100000000010
10000100111000010
11000001111111010000011111
```

OS:
- Windows 10
- OS X Yosemite

Computer system:
- CPU
- RAM
- Storage

Memory & data
- Integers & floats
x86 assembly
- Procedures & stacks
- Executables
- Arrays & structs
- Memory & caches
- Processes
- Virtual memory
- Memory allocation
- Java vs. C
Architecture Sits at the Hardware Interface

Source code
Different applications or algorithms

Compiler
Perform optimizations, generate instructions

Architecture
Instruction set

Hardware
Different implementations

C Language
Program A
Program B
Your program

GCC

x86-64

Clang

ARMv8 (AArch64/A64)

Intel Pentium 4
Intel Core 2
Intel Core i7
AMD Opteron
AMD Athlon
ARM Cortex-A53
Apple A7

we will be using
Definitions

- **Architecture (ISA):** The parts of a processor design that one needs to understand to write assembly code
 - “What is directly visible to software”

- **Microarchitecture:** Implementation of the architecture
 - CSE/EE 469
Instruction Set Architectures

- The ISA defines:
 - The system’s state (e.g. registers, memory, program counter)
 - The instructions the CPU can execute
 - The effect that each of these instructions will have on the system state
Instruction Set Philosophies

- **Complex Instruction Set Computing (CISC):** Add more and more elaborate and specialized instructions as needed
 - Lots of tools for programmers to use, but hardware must be able to handle all instructions
 - x86-64 is CISC, but only a small subset of instructions encountered with Linux programs

- **Reduced Instruction Set Computing (RISC):** Keep instruction set small and regular
 - Easier to build fast hardware
 - Let software do the complicated operations by composing simpler ones
General ISA Design Decisions

- **Instructions**
 - What instructions are available? What do they do?
 - How are they encoded?

- **Registers**
 - How many registers are there?
 - How wide are they?

- **Memory**
 - How do you specify a memory location?
Mainstream ISAs

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Digital home & networking equipment
(Blu-ray, PlayStation 2)
MIPS Instruction Set

x86
- **Designer**: Intel, AMD
- **Bits**: 16-bit, 32-bit and 64-bit
- **Introduced**: 1978 (16-bit), 1985 (32-bit), 2003 (64-bit)
- **Design**: CISC
- **Type**: Register-memory
- **Encoding**: Variable (1 to 15 bytes)
- **Endianness**: Little

ARM instructions
- **Designer**: ARM Holdings
- **Bits**: 32-bit, 64-bit
- **Introduced**: 1985; 31 years ago
- **Design**: RISC
- **Type**: Register-Register
- **Encoding**: AArch64/A64 and AArch32/A32 use 32-bit instructions, T32 (Thumb-2) uses mixed 16- and 32-bit instructions. ARMv7 user-space compatibility[1]
- **Endianness**: Bi (little as default)

MIPS
- **Designer**: MIPS Technologies, Inc.
- **Bits**: 64-bit (32–64)
- **Introduced**: 1981; 35 years ago
- **Design**: RISC
- **Type**: Register-Register
- **Encoding**: Fixed
- **Endianness**: Bi
Summary

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive

- Converting between integral and floating point data types *does* change the bits

- x86-64 is a complex instruction set computing (CISC) architecture